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ABSTRACT
In the TREC 2005 Spam Evaluation Track, a number of
popular spam filters – all owing their heritage to Graham’s A
Plan for Spam – did quite well. Machine learning techniques
reported elsewhere to perform well were hardly represented
in the participating filters, and not represented at all in the
better results. A non-traditional technique - Prediction by
Partial Matching (PPM) – performed exceptionally well, at
or near the top of every test.

Are the TREC results an anomaly? Is PPM really the
best method for spam filtering? How are these results to be
reconciled with others showing that methods like Support
Vector Machines (SVM) are superior?

We address these issues by testing implementations of
five different classification methods on the TREC public
corpus using the online evaluation methodology introduced
in TREC. These results are complemented with cross val-
idation experiments, which facilitate a comparison of the
methods considered in the study under different evaluation
schemes, and also give insight into the nature and utility of
the evaluation regimens themselves. For comparison with
previously published results, we also conducted cross vali-
dation experiments on the Ling-Spam and PU1 datasets.

These tests reveal substantial differences attributable to
different test assumptions, in particular batch vs. on-line
training and testing, the order of classification, and the
method of tokenization. Notwithstanding these differences,
the methods that perform well at TREC also perform well
using established test methods and corpora. Two previ-
ously untested methods – one based on Dynamic Markov
Compression and one using logistic regression – compare fa-
vorably with competing approaches.

1. INTRODUCTION
The TREC 2005 Spam Evaluation TREC[10] – the largest

laboratory evaluation of spam filters to date – models spam
filtering as an on-line learning task in which messages are
presented to the filter, one at a time, in chronological order.
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For each message, the filter predicts its class (spam or ham1)
by computing a score s which is compared to a fixed but
arbitrary threshold t. Immediately after the prediction, the
true class is presented to the filter so that it might use this
information in future predictions.

Previous studies typically model spam filtering as an off-
line (batch) supervised learning task in which a hard binary
classifier is induced on a set of labelled training messages
and then used to predict the class of each of a set of un-
labeled test messages [30]. Many of these studies further
abstract each message to a bag or sequence of lexically de-
rived features.

It is difficult to compare studies using these contrasting
models; furthermore, it is a challenge to adapt a filter de-
signed for one model to an evaluation method designed for
the other. Yet compare we must, if we are to advance our
understanding of spam filtering techniques, to determine
whether or not the two models yield similar results, and to
determine which, if they do not, is more appropriate. Com-
parison is given particular impetus by the fact that there
is little intersection between the well-performing methods
evaluated to date using the two models.

At TREC 2005, arguably the best-performing system was
based on adaptive data compression methods which have
shown mediocre performance for general off-line text clas-
sification. The other well-performing systems were derived
from currently deployed spam filters using a variety of tech-
niques colloquially referred to as ‘Bayesian’ – techniques
that have not been shown to perform well under the batch
model.

Support Vector Machine (SVM) techniques [17] are widely
reported to be among the best for supervised learning, text
classification, and batch spam filtering. Such techniques are
not represented at all at TREC 2005. Logistic Regression
(LR) is similarly reported to be effective for classification
[19] but has not, to our knowledge, previously been evalu-
ated2 as a spam filtering technique.

Our objective is to investigate the differences between the
two models, the test methods for each, and the transfer-
ability of filters and results between them. To this end we
prepare reference implementations of five well-performing
filters and evaluate them using the two models and several
public corpora. We compare the results to each other as well

1non-spam
2At this conference, Goodman [14] presents an adaptive lo-
gistic regression method and results on the TREC corpus
which compare favourably to our logistic regression method;
these results are reproduced in section 9.



as those in the literature based on the same methods and
corpora.

Two of our reference implementations embody methods
whose use for spam filtering has not been reported in the
literature. One, based on the adaptive Dynamic Markov
Compression method [9, 4], was inspired by the compression-
based methods that performed well at TREC [5] but was im-
plemented independently within the context of this study.
Two implementations previously tested at TREC are also
used: PPM, the above-mentioned compression-based method,
and Bogofilter [25], an established open-source filter. Our
final two reference implementations use established imple-
mentations of well-regarded machine-learning techniques: sup-
port vector machines [17] and logistic regression [19]; the
latter, to our knowledge, has not previously been evaluated
as a technique for spam filtering.

Our results show that all the reference implementations
perform well overall in comparison to published results, us-
ing both batch and on-line tests. Substantial differences may
be attributed to the nature of training and testing, message
ordering and tokenization.

2. BATCH AND ON-LINE MODELS
The batch model requires that a training set and a test

set be identified prior to testing; these sets are assumed to
be random samples of a common source population – the
population of email messages to which the filter might be
applied. The validity of the model is limited by the fact
that, in reality, there exists no such common population;
the classifier must be induced from existing messages and
applied to future ones. If one assumes that the character-
istics of messages do not change much with time, one may
consider the population of existing messages to be a proxy
for those yet to come. As a practical matter, it may be dif-
ficult to come by a sufficiently similar sample of messages
prior to deploying a spam filter.

The on-line model presents to the filter a chronological se-
quence of n messages, m0 through mn−1. For each message
mi a classifier is induced on m0 through mi−1, the subse-
quence of messages prior to mi. This classifier is used to
predict the class of mi. The on-line model is similar, but
not equivalent, to n instances of the batch model:

• the training messages m0 through mi−1 form a se-
quence rather than a set; the order of the sequence
may be useful (or deleterious) to the classifier;

• the training sequence may be very small, or empty, or
lack positive or negative examples;

• implementations requiring n invocations of a batch al-
gorithm are unlikely to be efficient enough for practi-
cal use – even a linear-time induction algorithm would
yield a quadratic-time on-line classifier.

A filter designed according to one model – batch or on-line
– may be adapted for the other. A batch filter might simply
treat {mj | j < i} and {mi} as training and test sets, in-
ducing a new classifier for each message. Such an approach
would be prohibitively slow, and could not harness informa-
tion present in the sequencing of m0 through mi−1. The
filter might break the message sequence into batches of size
k; for each batch b (0 ≤ b ≤

¨

n

k

˝

) treating {mj | j < bk} as
the training set and {mj | bk ≤ j < (b+ 1)k} as the test set.

This approach improves efficiency by a factor of k or more,
but may compromise effectiveness by reducing the effective
amount of training data by up to b messages; in particular
the b most recent prior messages which may most resemble
those to be classified. Finally, one might define a training
window of size w and use {mj | bk−w ≤ j < bk} as the train-
ing set for each batch. This approach yields linear-time effi-
ciency (as opposed to quadratic or worse depending on the
efficiency of the inducer) at the expense of a reduced train-
ing set size. On the other hand, this approach facilitates –
perhaps by accident rather than by design – adaptation in
that only recent prior messages influence the classifier. For
our experiments, we used w = 10000 and k = 1 for the first
1000 messages, k =

¨

i

20

˝

for the next 9000 messages, and
k = 500 thereafter. A number of other approaches might
be used. For example, one might preserve the ‘best’ exam-
ples as training data, or one might implement (if known) an
incremental training algorithm.

An on-line filter might similarly be adapted to batch test-
ing. The batch training set may be converted to a sequence
by the application of some order. The order might be arbi-
trary (such as the order in which the messages are stored in
a file), randomized, or determined by design. While order
may have a dramatic effect on performance, determining the
optimal order presents a challenge. To effect batch testing,
it is necessary to disable adaptation or any other change in
the classifier. Assuming this is done, the order of the test
sequence is irrelevant. In summary, an on-line filter may
be tested by running it on the training set (in some order),
disabling adaptation, and running it on the test set (in any
order). In our experiments, we used a random order unless
otherwise stated. A number of other approaches might be
used. For example, the filter may use multiple passes, or
train on the ‘best’ examples, or use less efficient approaches
that are impractical in an on-line setting.

We note that the same issues apply to hybrid schemes in
which training is batch but testing is on-line, or vice versa.

3. TOKENIZATION
Many spam filters use simple textual patterns to identify

features from which a classifier is induced. Several corpora
presuppose a particular set of patterns and provide only the
features. Ling Spam [1] removes all but the subject line of
message headers, converts all letters to lower case, and re-
places all strings of non-alphanumeric characters by a single
white space. PU1 [2] further converts each distinct alphanu-
meric string to a unique integer represented as a sequence
of decimal digits. The 2006 ECML Discovery Challenge3

goes further: strings that occur fewer than four times in the
corpus are eliminated, and each message is represented by a
vector indicating the number of occurrences of each feature
in the message. The format is exactly that required as input
by SV M light [17] and TR-IRLS [19].

Some filters – PPM and DMC in particular – treat each
message as a sequence of characters or bits, and automati-
cally discover patterns of interest. Others – like Bogofilter –
match header information and also the implicit semantics of
words and other tokens in identifying features. Such filters
are best suited to corpora that contain raw messages with
complete headers.

PPM and DMC required no adaptation for use on the

3http://www.ecmlpkdd2006.org/challenge.html



Ling Spam and PU1 corpora. Although the messages were
processed, the result was still a string of bytes (bits) thus
meeting their input requirements. The processing may have
removed beneficial information, and the arbitrary represen-
tation of features in PU1 may compromise effectiveness, but
but we have no way to recover the lost information. Bo-
gofilter required no adaptation to achieve good performance
on Ling Spam. However, we needed to transliterate decimal
digits to letters in order to achieve acceptable performance
on PU1. Obviously, Bogofilter treats numbers differently
from ‘words’ !

SVM and LR require feature vectors as input. For the
Ling Spam and PU1 corpora, we treat each distinct token
in the corpus as a feature, with a value of 1 if the token
occurs in the messages; 0 otherwise. We did not investigate,
for example TF-IDF weights as feature values, but we note
that the performance of this simple scheme is as good as any
reported in the literature for the same corpora.

To apply SVM and LR to the TREC corpus, we imple-
mented a feature extraction scheme similar to that for Ling
Spam and PU1 – we first decoded base-64 content, and dis-
carded non-text attachments. Full headers were preserved
(in contrast to Ling Spam and PU1). We identified and
uniquely labelled each string of alphanumeric characters in
the corpus. A binary-valued feature vector was constructed
for each message. We also generated preprocessed versions
of the messages – in Ling Spam and PU1 formats – to mea-
sure the impact of this style of preprocessing on the other
filters.

4. EVALUATION MEASURES
A hard classifier yields a categorical ham or spam judge-

ment for each test message. Although the term ‘soft classi-
fier’ appears not to be widely used, we shall take it to mean
a classifier that returns a score s that increases monotoni-
cally with the classifier’s estimate of the probability that the
message is spam. Within the context of spam filtering, soft
classification has several uses:

• the soft classifier is easily used as a hard classifier by
comparing s to a fixed threshold t – a higher value of t

will reduce false positives (misclassified ham messages)
at the cost of increased false negatives (misclassified
spam messages) while a lower value of t will have the
opposite effect;

• t may be adjusted by the user to account for different
sensitivities to misclassified ham and spam messages;

• t may be tuned automatically to optimize a particular
utility function [20];

• email may be separated into several ordinal categories
such as ham, unsure, and spam [22];

• quarantined email categorized as spam may be ranked
by s to facilitate occasional searches for mis-quarantined
ham [10];

• s may provide useful input to a stacking metaclassifier
[3, 21].

Within the context of a batch model, a soft classifier is ex-
actly what Sebastiani terms a ranking classifier [30]. In a
sense, the same is true of an online classifier, except that the

ranking (by s) is implicit and incremental – each message
takes its place among previously-ranked messages which are,
once placed, never reordered.

Many hard classifiers compute an internal score s which
makes a suitable soft classifier. SVM and LR fall into this
category. Other hard classifiers may take as input parame-
ters for a utility function (equivalent to t) which alters the
behaviour of the classifier. Such a classifier could be used
as a soft classifier by running it for several values of t and
reporting as s the maximum value for which the hard clas-
sification was spam.

The efficacy of a hard classifier may be measured by its
false positive rate (fpr) and false negative rate (fnr), defined
as the proportion of ham (resp. spam) messages that it mis-
classifies. A classifier with lower fpr and fnr than another is
superior4. Whether a classifier with a lower fpr and higher
fnr is superior or inferior depends on the user’s sensitivity to
each kind of error. A plethora of measures – including ac-
curacy, weighted accuracy, total cost ratio, F-measure, and
utility – attempt to quantify this sensitivity and to use this
quantification to combine fpr and fnr, along with the cor-
pus ham-to-spam ratio, into a one-dimensional measure. We
argue that it is better to report the two dimensional (fpr,
fnr) pair which may be combined post-hoc with deployment-
specific estimates of the relative costs of misclassification (cf.
Cormack and Lynam [11]). We transform published results
for hard classifiers to (fpr, fnr) which we plot as points in
ROC space (cf. [13, 11]).

The efficacy of a soft classifier may be characterized by
the set of all distinguishable (fpr, fnr) pairs for different val-
ues of t. This set of points defines a curve in ROC space –
a filter whose ROC curve is strictly above that of another
is superior, while a filter whose ROC curve crosses that of
another is superior for some cost parameters and inferior
for others. The area under the ROC curve (AUC) provides
an estimate of the effectiveness of a soft classifier over all
threshold settings. AUC also has a probabilistic interpre-
tation: it is the probability that the classifier will award a
random spam message a higher value of s than a random
ham message. In the spam filtering domain, typical AUC
values are of the order of 0.999 or greater; for clarity, we
report (1-AUC)% , the area above the ROC curve, as a per-
centage.

5. FILTERS, METHODS AND CORPORA
We have implemented or adapted five spam filtering algo-

rithms for both batch and on-line evaluation:

• PPM – Prediction by Partial Matching – the adaptive
method labelled ijsSPAM2 at TREC 2005 [5], based
on the PPM data compression method [8];

• DMC – Dynamic Markov Compression – a new adap-
tive method [4] inspired by but implemented indepen-
dently of ijsSPAM2, based on the DMC compression
method [9];

• Bogofilter – version 0.94.0 [25] – a popular open-source
‘Bayesian’ spam filter that performed well at TREC;

• SVM – SV M light[17] – an established free-for-scientific-
use support vector machine classifier;

4Under the assumption that all messages have equal mis-
classification cost. See Kolcz et al. [18]



• LR – TR-IRLS [19] – an established open-source lo-
gistic regression classifier.

We have evaluated these implementations, and where ap-
propriate compared the results to the literature, using the
following techniques and corpora:

• 10-fold cross-validation using the Ling Spam [1] cor-
pus;

• 10-fold cross-validation using the PU1 corpus [2];

• TREC on-line methodology using the TREC 2005 pub-
lic corpus5;

• 10-fold cross-validation using new random splits of the
TREC 2005 corpus6;

• 9:1 chronological split7 of the TREC 2005 corpus, batch
test;

• 9:1 chronological split of the TREC 2005 corpus, on-
line test.

We have, where meaningful, repeated the tests with two
preprocessed variants of the TREC corpus, in which the
vocabulary of each message corresponds to the feature set
extracted for use by the SVM and LR methods:

• a tokenized version in the style of the Ling Spam cor-
pus, in which contiguous sequences of alphanumeric
characters are preserved and other sequences of char-
acters are replaced by a single white space character;

• an obfuscated version in which each sequence of al-
phanumeric characters is further replaced by a unique
integer represented by a sequence of decimal digits.

6. LING SPAM AND PU1 RESULTS
As two of the oldest public corpora, Ling Spam and PU1

have been used in many studies. The ones that report statis-
tics from which it is possible to derive ham and spam mis-
classification rates are listed, with a mnemonic label and a
short description, in table 1. The results of each are de-
noted by one or more points in the ROC graphs in figure
1. The results of our five test filters – labelled DMC, PPM,
Bogofilter, Logistic and SVM – appear as multi-point curves
on the same graphs. All results are based on 10-fold cross
validation using the splits defined with each corpus.

The curves for DMC and PPM dominate the methods
in the Ling Spam results, with Bogofilter slightly inferior.
LR and SVM are somewhat lower. On the PU1 corpus,
which is very small, DMC, PPM, Logistic and SVM appear
to have about the same performance, above Bogofilter and
the other points and curves. Table 2 lists (1−AUC)% with
95% confidence limits for each of the curves, computed using
the TREC Spam Filter Evaluation Toolkit. These statistics
confirm the same impressions; however the confidence inter-
vals – especially for PU1 – are sufficiently large that these
results are not by themselves conclusive. However, we be-
lieve it is possible to conclude that our test methods – DMC

5http://plg.uwaterloo.ca/˜gvcormac/treccorpus
6http://plg.uwaterloo.ca/˜gvcormac/trecsplits.gz
7Training: first 82970 messages in index; test: last 9219.

and PPM in particular – compare favorably with existing
results on these corpora.

We note that DMC and PPM perform well in spite of the
fact that the results are derived from a batch evaluation and
that the messages are tokenized, stripped of headers and, in
the case of PU1, obfuscated.

7. TREC CORPUS RESULTS
We used the messages in the TREC 2005 Public Corpus

[10] for our primary experiments. Our first experiment used
exactly the TREC methodology, presenting to each filter the
entire corpus in chronological order. DMC, PPM, and Bo-
gofilter are directly amenable to on-line classification; LR
and SVM were run as described previously, with a maxi-
mum window size of 10000 and a maximum batch size of
500. Table 3 (left column) and figure 2 (left panel) show
the ROC results. These results may be compared directly
with those labeled “full” in the TREC proceedings8 [10];
PPM had the best performance at TREC on this corpus.
Bogofilter was 5th best. DMC’s performance exceeds that
of any TREC participant; our adapted LR and SVM meth-
ods, while inferior to Bogofilter, would have ranked with the
better systems.

Table 3 (third column) and figure 2 (right panel) show
the result of 10-fold cross validation on the same messages.
The training set was presented to the adaptive methods in
random order. All filters – except DMC – achieve substan-
tially better results with cross-validation. PPM shows the
most pronounced effect, the net effect being vastly superior
performance at all threshold levels. Superior performance
under cross-validation is not surprising as the filters have
the benefit of a substantial number of training examples
throughout the test, as opposed to a very limited number
for the initial messages in the on-line test. Also, the pres-
ence of ‘future’ messages in the training sets may provide
an oracle to the classifiers9. DMC’s lack of improvement
may be due to the fact that DMC adapts quickly, taking
advantage of the temporal locality in message characteris-
tics; locality that is absent with randomly ordered messages.
The advantage of cross-validation may be offset by the lack
of locality. This hypothesis is investigated further in the
following experiments.

We performed two tests – one on-line and one batch –
using the first 90% of the corpus for training and the last
10% (9219 messages) for testing. Effecting the on-line test
was easy; we simply discarded the first 82970 of our full-
corpus results. For the batch tests we re-ran the systems.
DMC was trained on chronologically ordered messages (as
were the other systems, but they are insensitive to training
order). If the messages in the corpus were homogeneous, we
would expect the results for the chronological batch run to
be about the same as for cross-validation, and the on-line re-
sults to be insubstantially better as a result of slightly more
training data. The results of the batch test (table 3, 4th col-
umn; figure 3, right panel) indicate that the chronological
split is quite different from the 10-fold splits ‘easier’ for the
adaptive methods and much ‘harder’ for the batch methods.
LR and SVM are at a considerable disadvantage; the high

8However, note that the TREC ROC curves are plotted on
a logit scale; ours are linear.
9Fawcett [12] draws attention to this and other anomalies
in batch filter evaluation.



Label Description
a-Bayes Naive Bayes, multi-variate Bernoulli model on binary features [1]
a-kNN k-nearest neighbors with attribute and distance weighting [27]
a-Stack Stacking of naive Bayes and k-nearest neighbors [26]
b-Stack Stacking of linear support vector machine classifiers built from different

message fields [6]
gh-Eval Naive Bayes with weighting of training instances according to misclassi-

fication cost ratio [15]
p-Suffix Pattern matching of character sequences based on suffix tree data struc-

ture and heuristic scoring functions [23]
s-Event Multinomial naive Bayes [28]
a-FBayes Flexible naive Bayes – uses kernel density estimation to estimate class-

conditional probabilities of continuous valued attributes [2]
a-Logit LogitBoost with decision stumps as base classifiers [2]
a-SVM Linear kernel support vector machine [2]
c-AdaBoost Boosted decision trees with real-valued predictions [7]
h-WordPos Multinomial naive Bayes [16]

Table 1: Results of Previous Studies
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Figure 1: Ling Spam and PU1 Corpora

Method Ling Spam PU1
DMC .07 (.01-.49) .26 (.09-.80)
PPM .04 (.004-.39) .18 (.08-.43)

Bogofilter .04 (.02-.11) .21 (.10-.43)
LR .087 (.04-.17) .20 (.07-.53)

SVM .14 (.08-.26) .22 (.10-.50)

Table 2: Cross-validation Results – Ling Spam and PU1 Corpora (1-AUC)%

On-line Batch
Method Full Corpus 9:1 Chronological 10-fold C.V. 9:1 Chronological
DMC .013 (.010-.018) .0003 (.0000-.003) .015 (.012-.018) .003 (.001-.006)
PPM .017 (.014-.021) .0007 (.0001-.005) .006 (.004-.009) .003 (.001-.008)

Bogofilter .048 (.038-.062) .002 (.0001-.041) .020 (.012 - .033) .009 (.003-.029)
LR .068 (.058-.079) .020 (.003-.135) .016 (.012-.021) .12 (.001-10.1)

SVM .075 (.064-.088) .007 (.0015-.033) .021 (.015-.029) .13 (.003-5.6)

Table 3: Overall Results – TREC Corpus (1-AUC)%

(1−AUC)% statistics and huge confidence intervals indicate
instability. DMC appears to take the most advantage, with
results improved five-fold.

The results for adaptive testing are even more striking

(table 3, 2nd column; figure 3, left panel). DMC shows a
factor of ten improvement over the batch test; a factor of
fifty over its cross-validation performance. PPM, Bogofilter,
and SVM show a five-fold improvement over batch, while
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Figure 2: TREC 2005 Public Corpus
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Figure 3: 9:1 Chronological Split

Training Testing Regimen
Filter Regimen On-line Random Order On-line Corpus Order Batch
DMC Random Order .01 (.006-.017) .007 (.004-.011) .009 (.006-.015)
DMC Corpus Order .035 (.026-.047) .037 (.024-.057) .31 (.25-.37)
PPM Batch .0052 (.003-.01) .0053 (.003-.009) .0055 (.003-.01)

Table 4: Effect of Training/Test Order (Fold 0)

SVM shows a factor of twenty.
We performed two further experiments to explore the ef-

fect of training and testing order on DMC and PPM. We
examined the effect of processing the training and test mes-
sages from fold 0 (from the 10-fold cross validation) in var-
ious orders. Each row of table 4 corresponds to a different
training regimen; each column corresponds to a different test
regimen. For DMC, row 1 column 3 corresponds to the strat-
egy used in the cross-validation. Columns 1 and 2 show the
effect of on-line training in random and corpus orders. As
predicted, on-line testing in random order appears to have
little effect (the apparent effect is negative, but could easily
be due do chance). On-line testing in corpus (chronological)
order may have some positive effect, but this test lacks the

statistical power to provide convincing evidence. The results
when DMC is trained on ordered data (with the test set ex-
cluded) – are much more dramatic. Batch performance is
thirty times worse. This degraded performance is mitigated
by a factor of ten when on-line testing is used, regardless
of testing order. The third column indicates that PPM is
oblivious to the ordering effects that affected DMC so dra-
matically. Training order is irrelevant, and the results are
essentially the same as for the cross-validation, regardless of
testing regimen.

The results show a large amount of locality in the TREC
data; the characteristics of examples appear to change with
time. Unlike PPM, the DMC adaptive model is affected
by the order in which examples are presented for training,



On-line Batch
Method Full Corpus 9:1 Chronological 10-fold C.V. 9:1 Chronological
DMC .013 (.010-.018) .0003 (.0000-.003) .015 (.012-.018) .003 (.001-.006)

tokenized .025 (.020-.032) .0006 (.0001-.006) .025 (.019-.033) .001 (.000-.013)
obfuscated .037 (.030-.045) .0004 (.0000-.0042) .029 (.023-.037) .002 (.001-.006)

PPM .017 (.014-.021) .0007 (.0001-.005) .006 (.004-.009) .003 (.001-.008)
tokenized .038 (.033-.045) .0016 (.0003-.009) .012 (.009-.016) .005 (.002-.012)
obfuscated .075 (.066-.084) .0046 (.0016-.013) .020 (.014-.027) .015 (.006-.035)
Bogofilter .048 (.038-.062) .002 (.0001-.041) .020 (.012 - .033) .009 (.003-.029)
tokenized .13 (.11-.15) .024 (.004-.14) .055 (.045-.068) 3.1 (2.8-3.4)
obfuscated .13 (.11-.15) .024 (.004-.14) .059 (.048-.071) 3.7 (3.3-4.1)

Table 5: Effect of Tokenization and Obfuscation – TREC Corpus (1-AUC)%

and is most influenced by the more recent examples. This
behaviour serves to its advantage in a typical online setting,
but may also hurt the method when training and test data
are presented in an “unnatural” order.

8. EFFECT OF TOKENIZATION
The Ling Spam and PU1 results led us to ponder the ef-

fect of tokenization and obfuscation on filter performance.
Since DMC and PPM examine sequences of characters or
bits, altering the data encoding might have a significant im-
pact. To measure this impact, we created two tokenized
versions of the TREC corpus; one tokenized in the style of
Ling Spam and one obfuscated in the style of PU1. Our
principal experiments were repeated on these corpora; the
results appear in table 5. Baseline results, repeated from
table 3, are given in italics.

PPM is consistently hurt by tokenization, and hurt fur-
ther by obfuscation; approximately by a factor of two in
each instance. DMC is hurt by tokenization and obfusca-
tion on the full corpus test, but not so much, if at all, on the
chronological splits. In fact, for the batch test, performance
apparently improves. This apparent improvement may be
due to chance; we can offer no more plausible explanation.

Bogofilter is hurt substantially by tokenization but not
much, it appears, by further obfuscation. Note that to-
kenization degrades Bogofilter’s performance on the batch
chronological split by two orders of magnitude. Examination
of the data reveals that this phenomenon is largely due to the
existence of bursts of near-identical spam messages. In the
original format, Bogofilter is able to identify features (per-
haps headers or obfuscated words) that allow it to correctly
classify these messages; our tokenization defeats this abil-
ity. The phenomenon does not occur with cross-validation
because the training sets contain examples of each burst.

9. DISCUSSION
Our results invite further experiment and analysis. The

performance of our reference implementations – both on-line
and batch – is limited by our imagination, skill and imple-
mentation effort. While comparison with published results
indicates that our implementations are at least reasonable,
one should not conclude, for example, that SVM and LR are
inferior for on-line filtering. One may conclude, on the other
hand, that DMC and PPM set a new standard to beat on
the most realistic corpus and test available at this time.

Within this context, two recent results are worthy of note.
Goodman and Yih [14] use gradient descent in a truly adap-
tive logistic regression method, achieving superior perfor-

mance to our logistic regression method in on-line tests on
the full TREC corpus. Lynam and Cormack [21] achieve su-
perior overall performance for the on-line tests by fusing the
results of the fifty-three filters evaluated at TREC. These
results are reproduced in table 6.

The mechanisms behind the strong performance of the
compression-based methods appear to be complex, and some-
what different for the two methods. Both take advantage of
intra-word and inter-word patterns that distinguish spam
from ham. DMC, in addition, harnesses inter-message cor-
relations, as its model is biased toward recent examples.
This bias, we think, makes DMC in general more adaptive
than PPM. Both models appear to handle heterogeneous
data better than the feature-based methods. A better un-
derstanding of the mechanisms might help to guide feature
extraction for machine-learning algorithms.

The TREC corpus is quite obviously inhomogeneous and
demonstrates strong temporal locality. The ham and some
of the spam in this corpus is derived from the Enron cor-
poration through a time of upheaval, from business-as-usual
through bankruptcy and receivership. So it is not surpris-
ing that the nature of messages changes with time. We do
not believe that this makes it an unrepresentative corpus
– people’s and organizations’ circumstances change, and a
corresponding change in the nature of email is to be ex-
pected. Also, spam itself adapts, as the process is adver-
sarial. Further investigation is required to determine the
extent to which the TREC corpus is typical in this regard,
and whether the observed effects are due to changes in the
nature of the ham, the spam, or both.

Our results show that on-line testing and cross-validation
are different, and support arguments questioning the va-
lidity of cross validation for testing spam filters10. Cross-
validation excessively penalizes methods with a high degree
of adaptation, although they are extremely competitive on
real e-mail sequences. Notwithstanding these reservations as
to the validity of batch testing, we see that DMC, Bogofilter
and, in particular, PPM yield superior results in batch test-
ing; however much of their advantage may be due to better
implicit or explicit feature engineering, as evidenced by the
fact that the superiority is compromised by the use of obfus-
cated tokens. Better feature engineering might give feature-
based techniques the edge; for example, Peng et al report
good performance for language-based features [24] that har-
ness the inter-word patterns that we believe account, at least

10See, for example page 40 of:
http://research.microsoft.com/˜joshuago/
tutorialOnJunkMailFilteringjune4.pdf



On-line
Method Full Corpus 9:1 Chronological

Adaptive Logistic Regression [14] .022 (.017-.027) .066 (.0003-11.9)
TREC Filter Fusion [21] .007 (.005-.008) .0003 (.0000-.01)

Table 6: Related Results – TREC Corpus (1-AUC)%

partially, for the compression models’ performance. Sculley
and Brodley [29] present a general framework for the rela-
tionship between compression models and feature selection.

The TREC results are not an anomaly. Well-performing
systems at TREC demonstrated superior performance rela-
tive to published results on other corpora. A new method –
DMC – inspired by the the best system at TREC – PPM –
demonstrates even better performance, although our testing
reveals that DMC and PPM achieve their results through
somewhat different mechanisms.
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