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ABSTRACT

In this paper we detail the use of e-mail social network anal-
ysis for the detection of security policy violations on com-
puter systems. We begin by formalizing basic policies that
derive from the expected social behavior of computer users.
We then extract the social networks of three organizations
by analyzing e-mail server logs collected over several months
and apply the policies to the resultant social network and
identify subsequent policy violators.

After closer examination of the outlier accounts, we find
that a significant fraction of the suspect accounts were sup-
posed to have been terminated long ago for a variety of
reasons. Through the analysis and experiments presented
in the paper, we conclude the analysis of social networks
extracted from network logs can prove useful in a variety
of traditionally hard to solve security problems, such as de-
tecting insider threats.

1. INTRODUCTION

We human beings are social creatures. As we use our
computational tools to communicate with one another, the
social interactions which we engage in leave impressions in
network traffic and log files. The map of communication
that binds a community can be extracted from a variety of
sources, such as network traffic traces, file shares, and IM
logs. The typical daily usage seen by corporate and edu-
cational department e-mail servers, for example, generates
predictable patterns in the social network that can be quan-
tified using graph theory. Similarly, misuse patterns, such
as the generation of traffic from accounts being controlled
by unauthorized users, appear as anomalies in the social
network which can also be easily quantified.

In this paper, we detail the use of e-mail analysis for de-
tection of security violations on a computer system. We be-
gin by translating the strictly enforced polices and weakly
enforced social mores which govern the use of e-mail sys-
tems into the language of graph theory. The policies are
then applied to e-mail social networks we have extracted
from several months of mail transaction logs from multiple
organizations. Upon closer examination of the users which
violated the policies we defined, we find that a significant
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fraction of the suspect accounts were supposed to have been
terminated long ago for a variety of reasons. Through the
analysis and experiments presented in the paper, we show
that:

e Social networks extracted from system log files can be
useful in finding individuals who are causing security
violations.

e Many properties of social networks that have an im-
pact on system security are computationally feasible
to evaluate, and in fact can be determined in linear
time.

The architecture and techniques presented are not a re-
placement for the standard policy enforcement mechanisms
which are necessary for controlling well-described security
issues. Firewalls and access-control lists are critical for en-
forcing the strict security policies which are common in real-
world computer networks. We contend, however, that policy
enforcement can also be applied on months of social inter-
action data extracted from system logs. The system admin-
istrator can then act on any accounts identified as policy
violators as he or she sees fit.

The social network analysis system proposed in this paper
is an attempt to solve a specific instance of the malicious in-
sider problem, which is known to be a notoriously difficult
and critical issue in the security community. Our architec-
ture is capable of identifying invalid accounts held by users
who, on the surface, appear to be accepted members of an
organization but do not exhibit the same social behaviors
as others in the organization. The social network analysis
system proposed in this paper may not identify all invalid
accounts located on a server. If an account is held by an
unauthorized individual who follows all of the social behav-
iors that we define to be acceptable, then our system would
not flag these users for further analysis. Additionally, our
architecture is not useful in finding invalid accounts on ISP-
based mail servers, nor is it an effective method of spam con-
trol. In both instances there is no predictable social struc-
ture that emerges out of the logs which can be exploited for
finding misbehaving accounts.

2. RELATED WORK

Our work can be viewed as an application of social net-
work [1] analysis to information security. Techniques similar
to those discussed in this paper are currently being applied
to spam filtering and e-mail manageability, for example [5,



7). Tyler, Wilkinson, and Huberman showed it was possi-
ble to use graphs derived from e-mail to divine the organi-
zational structure of a corporation [11]. Cortes, Pregibon,
and Volinsky showed how telephone fraud can be detected
by comparing the social behavior of new telephone accounts
to that of previously tagged fraudulent accounts [3]. Using
techniques which are in the same spirit as Cortes’ work, we
show that determining if an individual is participating in an
organization through standard social norms via e-mail is an
effective method of locating invalid accounts on a system.

It is possible to describe our work as an application of
intrusion detection, or IDS, methodologies to e-mail social
networks. For example, graph-based approaches in intrusion
detection have been explored in [2] for network traffic analy-
sis. Our described method is, in many ways, a combination
of rule-based [9, 10] and anomaly-based IDS whose data set
is the graph created by user interaction [4, 6]. Like rule-
based IDS, the system uses rules explored in Section 3.1 to
detect anomalous behavior. The analysis, however, must be
done on a volume of accumulated data and is not directly ap-
plicable to online analysis. Unlike anomaly-based intrusion
detection systems, no training time is required to begin the
analysis. Anomaly-based techniques can be used after the
rule application process to further filter out known accept-
able behavior before presenting the report to the analyst.
Time is required to accumulate enough logs to construct
the graph defined by individual interactions; we provide an
analysis of how much data was necessary from our data sets
in Section 4.

3. POLICIESON GRAPHS

We consider an example graph of interactions found on a
departmental e-mail server in Figure 1. Users adam, jeffa,
and walt interact with one another on a regular basis, send-
ing e-mails back and forth. Outside collaborators, specifi-
cally newsham and £fMRI, communicate with jeffa on a reg-
ular basis. While not a member of the larger community,
intern shares an account on the same server and commu-
nicates with one of jeffa’s coauthors, fMRI. Certain users
appear to be engaging in behaviors that are counter to the
group’s mores; one user, mOrtgédge, is sending e-mails to
jeffa which go unacknowledged. Users eve and trudy seem
to be carrying on communication which is completely sepa-
rate from the user community.

The rules of social behavior that exist are not completely
arbitrary. We expect individuals who hold an account on
a sever occupied solely by a single community to interact
as if they were members of that community. People within
the same community should communicate with one another.
If a user is found not to collaborate at all with any other
members of the community, however, the user may either
be a rugged individualist or the user may be accessing an
account illegitimately. While the former is perfectly accept-
able behavior, the latter is clearly unacceptable. Therefore,
it would be useful to write policies that describe properties
of the user’s social network and then catch behaviors which
do not match these policies.

3.1 Example Policiesand Algorithms

We begin defining our policies by first formalizing our e-
mail topology. Let the graph which is generated by e-mail
traffic be defined as G = (V, E), with E being a set of di-
rected edges where each edge represents the existence of at

Local Accounts

Figure 1: A sample subset of e-mail transactions is shown
in the above figure. The majority of behavior is normal for
a departmental e-mail server, where cliques form amongst the
internal users and communication occurs with outside collabo-
rators. The smaller disconnected component consisting of eve
and trudy constitutes suspicious behavior due to its lack of
interaction with the rest of the group, however.

least one e-mail between two users. The subgraph induced
by the e-mails observed by a given host s as Gs = (V, E),
where V is the set of e-mail users, Vs C V is the set of e-mail
users who have accounts on the host s, and Fs C E is the
set of edges which have at least one endpoint in V.

Our first statement is the relatively standard policy of
disallowing relay e-mails, which is strictly enforced on many
e-mail servers on the Internet. This policy, which we refer
to as NO-RELAY, is a standard technique in spam control
that requires that either the source of the e-mail or the des-
tination of an e-mail message must be an account handled
by the host.

We do expect each user of the e-mail server to communi-
cate with at least one other user of the e-mail server over
some period of time. While it is not mandatory for individ-
uals to periodically check in with one another, it might be
anomalous for an account holder not to communicate with
any other account holder over some period of time. Specifi-
cally, the policy requires that every user on the system be an
endpoint for a bidirectional edge, referred to as reciprocity
in the literature [12].

In terms of e-mail interaction, the policy states that every
user sends out at least one e-mail that is responded to by the
recipient. The application of this policy has the added ben-
efit of filtering out spam from our data set. In the example
provided in Figure 1, the policy would remove mOrtgége’s
messages from the social network.

Our second policy, named COLLABORATE, is a formaliza-
tion of this policy. In graph theory terms, there will exist
a bidirectional edge walk from every vertex to every other
vertex on the graph for all vertices in V. A useful, but
weaker, form of this policy is called WEAK-COLLABORATE,
which states individuals are in the same collaboration chain
if each communicating pair is on the same server or if they
share an outside collaborator. In other words, a walk is ac-
cepted by the WEAK-COLLABORATE policy if every vertex



# G contains the e-mail graph

# G contains the “collaborators”

# G contains the “weak collaborators”

# V(G), E(G) denote the vertex and edge sets of a graph G.

Main:
Initialize G — (V — 0, E — 0)
Initialize G. « (V. « 0, E. « 0)
Initialize Gue «— (Vi «— 0, Ewe «— 0)
Load e-mail log files
Load all accounts under our control into Vs

for each log entry:
parse {Usource; Vdest }
if {USOUT'C€7 Udest} ¢ E:
if vsource ﬁé V:
V — V Uvsource
if vgest ﬁé V:
V — V Uvgest
E—FEU {Usour667 Udest}

for each {Usourcm Udest} € E:
if {Udest7 Usource} S
if vsource € Vs A vgest € Vs:
E.+— E.U {Usour667 Udest}
if Vsource € Vs V Ugest € Vs:
FEuwe «— Ewe U {’Usou'rcey Udest}

CPolicyBreakers «— Vs—
LargestConnectedComponent(G.)

WC PolicyBreakers «— Vs—
LargestConnectedComponent(Gwc)

Return CPolicyBreakers, WC PolicyBreakers

Figure 2: Pseudo-Code Implementation of the Policy Viola-
tion Detector.

in the walk contained in V; is separated from its neighbor-
ing vertices contained in V; and on the walk by at most one
vertex not in V.

We therefore can define a policy violator as any account
situated on the server which does not lie in the largest con-
nected component of the graph, which allows us to evaluate
these policies in polynomial time. In Figure 2 we present
an algorithm for identifying users responsible for violating
the specified policies. The algorithm first selects the edges
critical to the graph as defined by the COLLABORATE and
WEAK-COLLABORATE polices. The largest connected com-
ponent is identified, and any vertices which lie outside the
largest connected component and exist on the mail server
are reported to the administrator. After further examina-
tion, the administrator can decide if the account is invalid,
and if so, deactivate the account.

4. EXPERIMENTAL RESULTS

Our initial data set was generated from ece.drexel.edu’s
mail logs, and consisted of 1,038,939 log entries for each e-
mail sent and received from January to September 2003 by
the domain’s sendmail server. When examined as a whole,
the logs contain 337,773 unique {to, from} e-mail address
pairs generated by 251,348 unique accounts, the majority
of the mail transactions being due to spam. The resultant
graph is not fully connected and contains 50 disjoint com-
ponents. We create a new graph, which we refer to as the

V| |E| CC Count
Raw Data | 251,348 337,773 50
Reciprocity Subgraph | 12,408 18,809 14

Table 1: The above table provides a summary of the number
of vertices and edges present one of the author's department'’s
e-mail logs. The graph dramatically reduces in size after re-
moving all edges which do not have a reverse edge and all
vertices which do not have any incident bidirectional edges.

Violations

Policy Tested ‘ Examined Suspect Confirm
COLLABORATE 294 37 14
WEAK-COLLABORATE 294 13 8

Table 2: The COLLABORATE and WEAK-COLLABORATE
policies were applied to the reciprocity subgraph, which then
uncovered 36 and 13 possible policy violators out of 294 ac-
tive accounts, respectively. After discussion with the system
administrator, it was decided that 14 of the accounts found by
the COLLABORATE policy should be immediately terminated.
The confirmed violators of the WEAK-COLLABORATE policy
formed a subset of the confirmed violators of the COLLABO-
RATE policy.

reciprocity subgraph, by restricting the edge set to include
only bidirectional edges. The resulting graph is reduced to
37,618 {to, from} address pairs, or 18,809 undirected edges.
These edges exist between 12,408 vertices, which are now
unique e-mail ID’s, in 14 separate connected components,
with the largest connected component consisting of 12,354
vertices and 18,768 undirected edges. These statistics are
summarized in Table 1.

The reciprocity subgraph is then further processed us-
ing the algorithms presented in Section 3.1. As shown in
Table 2, out of a possible 294 active accounts, 37 suspi-
cious accounts were found using the COLLABORATE policy,
and 14 suspicious accounts were found using the WEAK-
COLLABORATE policy. When presented with the latter pol-
icy violators, the ece.drexel.edu system administrator found
that 8 should have been terminated long ago, with the re-
mainder of the accounts being owned by webmail users and
one deceased professor with an auto-responder placed in his
account. After being shown the remainder of the accounts
found by the COLLABORATE policy, an additional 6 accounts
were found that were clearly illegitimate.

It was not possible for the authors to gather statistics on
the total number of false negatives, or users who were ac-
tually invalid but not labeled as such by our architecture.
Our system administrators, while extremely accommodat-
ing, did not have the resources to validate every account on
the system.

4.1 Required Depth of Data

While it would be more efficient from both a computa-
tional and a log storage aspect to examine only a subset of
the e-mail logs to detect policy violators, as can be seen in
Figure 3 this may not always be possible. Invalid account
holders may rarely communicate with other individuals off
the system, necessitating the use of deep communication
logs. Additionally, while the majority of e-mail account
holders fall into a single community after a short period
of time, the number of individuals who join this commu-
nity continues to increase over the course of several months.
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Figure 3: We examine the volume of logs required to perform
our analysis by counting the number of connected components
present as edges are added to the set of e-mail users who are
active over the log usage period. While the majority of users
end up in the same connected component after one month, the
number of connected components continues to slowly decrease
over nine months.

Therefore, not only will examining lengthy portions of logs
increase the number of policy violators that can be detected,
it will also decrease the number of false positives, or indi-
viduals who are incorrectly tagged as being social outliers,
found by our system.

The authors do believe that a windowing scheme, such as
the one presented by Cortes in [3], would be useful for com-
batting a social engineering attack mounted by holders of in-
valid accounts. In the attack, invalid account holders would
occasionally attempt to convince a valid account holder to
communicate with the attacker. If successful, the invalid
account holder would place themselves inside the main con-
nected component and remove themselves from considera-
tion by our system. To combat this attack, a windowing
system can be used to remove edges temporarily from the
largest connected component, which would expose compo-
nents which are only loosely connected to the larger social
network.

Preliminary analysis of five contiguous months of mail logs
from two additional sources, namely logs from cs.drexel.edu
and ece.vill.edu, shows similar disconnected groups of
users. Due to confidentiality restrictions on the data, we are
not able to fully quantify which accounts are invalid beyond
a confirmation from the mail administrators that we have
identified several problematic accounts on their systems.

5. CONCLUDING REMARKS

E-mail server log data from communities of people who are
expected to know each other (academic department servers,
university servers, internal corporate servers) provide a rich
trove of social network information. Using graph theoretic
techniques, especially analyzing the connected components
of the weak and strong conversation graphs, is highly effec-
tive at generating candidate intruders.

While we concentrate on e-mail interaction graphs in this
work, our techniques are not limited to e-mail communica-
tion analysis. For example, the access patterns of documents

on a shared file system can be used as a basis for construction
of a social interaction graph. While the traffic traces asso-
ciated with client-server file shares encode only client-server
communication, they also implicitly encode a relationship
between humans on the clients and documents located on
the servers. The links from authors to documents give rise
to a bipartite graph, where the bipartite graph’s one mode
projection [8, 12] of the document authors can then be an-
alyzed using techniques similar to those presented in this
paper.

In future work, we plan on examining the forms of at-
tacks which can be applied against our architecture, and
the corresponding countermeasures which can be employed
against these attacks. For example, the social engineering
attack mentioned in Section 4.1 may be combatted through
the use of the mentioned windowing system or by examin-
ing only k-connected components as opposed to singly con-
nected components.
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