

Deployment Experience: Rolling Out a New

Antispam Solution in a Large Corporation

Barry Leiba

IBM Research

Hawthorne, NY
leiba@watson.ibm.com

Jason Crawford

 IBM Research

Hawthorne, NY

ccjason@us.ibm.com

Abstract

Our research group has developed new, state-

of-the-art antispam software, described in

other papers. We are in the process of

deploying that software in a large production

corporate infrastructure, as a replacement for

the prior antispam solution. This paper

describes how we went about the deployment,

and our experiences therewith, with an eye

toward pointing out the icebergs and the

lifeboats, to help make the process go

smoothly for others. We also report what we

learned, in the process, about user needs and

expectations with respect to antispam

solutions.

1 Introduction

As antispam software evolves, large organizations may
find themselves replacing existing antispam solutions
with new ones, for reasons technical, contractual, or
both. While we would like to think that this should be
easy, and vendors will certainly present their software
(and hardware) as drop-in replacements, there are, in
fact, many things to be considered and many things that
can go wrong along the way.

IBM’s
1
 Research Division has developed a state-of-the-

art antispam solution, called SpamGuru (Segal et al.,
2004). SpamGuru represents a significant improvement
over the prior system in use at IBM, using novel
message classifiers (Rigoutsos and Huynh, 2004; Leiba
et al., 2005) and an experimental aggregation system
(Segal, 2005) to use the combination to best advantage.
With the cooperation of the Research Division IS
department and the Office of the CIO, we have begun
deploying our system in the corporate infrastructure.

1 “IBM” is a registered trademark of the IBM Corporation.

As with any such deployment in a large corporation,
there are many procedures to follow, assurances to be
made, plans to be documented, checks to be checked,
and balances to be balanced. In addition, there are
several aspects unique to the deployment of antispam
software. This paper will describe those aspects, the
phased process we used to ensure that it all went
smoothly, the difficulties we encountered, and how we
resolved them.

2
 We will also tell what we learned

about what users want from, and expect of, antispam
solutions, and how those needs and expectations affect
deployment plans.

2 Getting Started

When we first implemented antispam filtering at IBM,
we set up a task force to analyze the situation, review
the alternatives, and make recommendations to the
Office of the CIO. The CIO office acted very quickly
and, with the output of the task force barely in hand, we
deployed an antispam solution, first in the US and then
throughout the corporation. At first, spam was handled
by labeling it, by prepending a string to the subject, and
allowing user agents (or the users themselves) to handle
the suspected spam based on the label.

While that first system evolved, and went from labeling
to deleting, a team in IBM’s Research Division formed,
composed of people who had been working on text
classification, machine learning, email, and antispam
filtering on other projects. It was from there that we got
started on a project to replace the initial system, the
“prior” antispam solution, with one developed by our
Research team.

Of course, the first part of getting started, for us, was to
develop the software. SpamGuru is described in detail

2 Corporate policy prevents us from revealing details of the prior

antispam system (hereinafter referred to as the "prior" or "old"
system), and from comparing its performance quantitatively to that of

SpamGuru. Fortunately, such details are not germane to the central

aim of this paper, which is to describe the experience of replacing an
existing anti-spam solution, not to make specific comparisons.

in another paper (Segal et al., 2004), and, while
software development is not a part of most
deployments, the selection of an antispam solution is a
general issue, and a complex one in a world with many
options. There is no “best” antispam technique, and the
best approaches combine many techniques to make
them flexible and robust (Leiba and Borenstein, 2004).
This lack of a single best technique leaves a lot to
choose from, in both software and hardware (many
antispam “appliances” are now available, sold as “plug-
and-play” devices to be inserted into the organization’s
mail stream), as well as hosted services.

For an organization that’s deciding to change how it
handles spam, the primary technical consideration is
how effective the new system is, as compared with the
old one. Note that this is a very different decision point
from what might be used in choosing to implement an
antispam system for the first time, as users start with
different expectations; indeed, since they have likely
been receiving a great deal of spam, nearly anything
will seem better. When replacing an existing system,
one faces users whose expectations have been set by the
prior system, and even small changes will be noticed.

We decided that the best way to compare the systems
was one that also allowed us to do comparisons of a
number of aspects, including reliability, manageability,
and user satisfaction: we would run the two systems in
parallel, using a phased rollout.

3 The Phased Approach

We had the good luck of having a Research domain,
watson.ibm.com (the “Watson domain”), with which we
could do some experimenting before implementing the
new system on the main corporate domains (us.ibm.com
and the other “country-code” domains). The Watson
domain provided us a production environment that
doubled as a testing environment, because disruptions
to that domain are not as serious as are disruptions to
the country-code domains. Although having a domain
like this was not necessary, and in some environments
it’s not possible, being able to test on such a domain
gave us an extra level of comfort that we valued.

As we tested our deployment in the Watson domain, we
chose a set of deployment phases that turned out to
work well, and which we used again when we later
supported the country-code domains:

1. Insert the new SMTP server into the stream, with
all processing turned off.

2. Turn on classification in the new software, but
relay or discard mail based on the decision of the
prior antispam software.

3. Switch the operations in phase 2: continue
classifying mail in both systems, but handle the
mail according to the new software.

Phase 1 made sure that the routing, MX records, and the
like were set up correctly, and also ensures that the
servers involved can handle the email volume. It was
good to run this phase briefly, to eliminate these as
potential causes for the problems we might encounter in
the next phase. How the different systems are arranged
will depend upon the features available in each software
package. In our case, because we wrote the SpamGuru
system, we had infinite flexibility in how it worked, and
could set it up to take the output from the old software,
keep logs of comparisons, and then handle the mail
according to the old classification or the new (or both),
based on configuration options.

In phase 2, we again had to evaluate how we handled
the email volume, since we began doing the extra work
of email classification. At this phase, we compared the
throughput of the old and new systems, and their
effectiveness at filtering the spam. While we only ran
phase 1 for a week or so, phase 2 continued for a longer
period, as we monitored and tuned the new system.

Phase 3 essentially put us into full production, but with
a “safety net”: if something should go wrong, we still
had the old software running and could fall back to it.
We also could continue to monitor the effectiveness of
both, and compare them, and the results of that helped
us know what to expect over time when we moved into
the country-code domains.

4 User Experience and Expectations

The SpamGuru deployment in the Watson domain gave
us a good chance to do an informal survey of users on
their experience with the system, and to observe their
behavior and expectations. What we got, through
feedback from the pilot users and input from the
corporate task-force, was a good sense for some of the
needs users have, some of the needs they think they
have, and what their tolerance is for ups and downs in
an antispam system.

Very broadly, these are what we came across (some of
these, of course, will surprise no one):

1. Users do not want any spam.

2. Users do not want any legitimate mail deleted as
spam (no false positives).

3. Users vary in how they set the priority between
items 1 and 2 – that is, what their tolerance is for
false positives.

4. Users are certain that you are deleting legitimate
mail.

5. Users want to send you the spam that gets past the
filters.

6. If there are outages or problems, users will
complain.

4.1 Spam and False Positives

We all know that there is a conflict between items 1 and
2, above, and we strive to balance it. The trouble is that
different groups and different individuals we surveyed
expressed strong needs for different balances. Some
scientists we spoke to, who get a large amount of
Internet mail related to their work, have no tolerance for
false positives and would rather get more spam than
miss any legitimate messages. On the other hand, an
administrative group made it clear that their priority
was to get no offensive mail, and they were quite
willing to miss some legitimate mail to achieve that.
Corporate policy, too, would affect the balance between
eliminating spam and avoiding false positives. And in
divisions outside of Research, we knew we would have
to worry much more about mail coming from
customers, for which false positives would be serious.

In addition to the needs, though, is the perception.
Many users – perhaps most – believe that the antispam
filters are catching legitimate mail as spam, and those
with the strongest need for no false positives believe
that the strongest. One way to deal with that fear is to
not delete spam, but to deliver it to the user in another
manner, outside the inbox.

A result of corporate policy to delete is that users who
worry about false positives have no way to check for
them or fix them. What’s worse for SpamGuru is that it
is a learning system that relies on input from users, and
it is especially valuable to be told about false positives.
To get that feedback, we must give them a way to look
at the mail we’d like to be deleting.

SpamGuru has a number of ways to do that. Instead of
completely deleting a message, we can, for example:

1. tag the message with a header record (or text
prepended to the subject) and deliver it, or

2. deliver the message using sub-addressing
(changing smith@example.com to, for instance,
smith+junk@example.com), or

3. archive the message in a web-accessible repository,
so that users may review it as they please.

The first mechanism allows the user to use user-agent
filtering to move the message to a non-inbox folder if
she so chooses. But both of the first two mechanisms
go against corporate policy, and so it’s the third that we
implemented in our experiment.

4.2 User Voting

We found that users’ minds were eased by knowing that
they had the option of checking for false positives, and

that they seldom actually checked. This is both good
and bad: It’s nice to be trusted, yet, because SpamGuru
is a cooperative system driven by feedback, if users
don’t check the archive and vote, we don’t learn. Now,
that’s not entirely true, because of item 5 in the list
above, “Users want to send you the spam that gets past
the filters,” so we will get some votes in any case.

SpamGuru provides three ways for users to give
feedback to classification engines:

1. The archive – the archive has a GUI for voting.

2. An API – we provide an API that MUAs and other
applications can call to submit votes.

3. Email – the message can be forwarded to one of
two email addresses, to vote “good” or “spam”.

For users who do not use the archive, we provided an
easily installed pair of Lotus Notes “buttons”, which
allow a user to select one or more messages and simply
press the appropriate button to send us votes on the
selected messages. Users who use other MUAs can
forward the messages, and we’ve told them how.

We receive many votes, but few votes are for non-
spam. We have tried to encourage users to vote as
much of their legitimate mail as they’re willing to take
the time to, so that our classifiers may keep learning
“good” patterns in addition to spam patterns. Indeed,
our users probably are doing so, but “as much as
they’re willing” is pretty close to “none”. We are,
therefore, relying on the handful of “early adopter”
types, who are willing to do the extra work to help the
effort, to give us the relatively few non-spam votes that
we get. This limits the effectiveness of our learning.

For these early adopters, we set up a volunteer “pilot”.
Users who sign up for that agree to receive more spam
during the pilot period, in order to help tune the system.

1. We optionally change the spam threshold for them.
Raising the threshold will send more spam their
way for voting. Lowering it will cause more
apparent “false positives”, which they will vote.

2. For all mail where the old and new antispam
systems disagree, we tag the mail with
“[PleaseVote]” on the subject, and we deliver it.

3. Based on the user’s individual message volume, we
tag a random sampling of spam and a random
sampling of non-spam with “[PleaseVote]”. This
forces votes for some legitimate mail.

Pilot participants are asked to vote thoroughly and
carefully on all mail that’s tagged with “[PleaseVote]”.
We have about 150 pilot users, and their votes are
helping keep the SpamGuru system performing well.
As we move forward, we continue to solicit more
participants to volunteer to join this voting corps.

5 Reliability and Availability

To the final point, “If there are outages or problems,
users will complain,” we can add that “Research users
will complain more.” The good side of that is that they
will complain quickly, as well, and we have actually
relied on that to let us know about problems right away.

As it turns out, reliability problems all occurred early,
and were soon resolved, and the system has now been
stable for a considerable time. When we first set up the
system, we used an SMTP server built on Research
software called the Internet Messaging Framework (von
Känel et al, 1998). We used the IMF server in the
Watson domain, but corporate policy required a switch
to Sendmail

3
 for deployment in the country-code

domains, so we re-implemented the links to the SMTP
server using the more limited Sendmail milter interface.

The biggest drawback of using the milter lay in our
personalized handling of messages. SpamGuru derives
personalized as well as global knowledge from votes
and can provide personalized classifications. If a
message is sent to multiple recipients, SpamGuru can
evaluate the message using personalization, and might
give the same message different spam scores for the
different users. The IMF server allowed us to split the
message, in that case, sending different copies, with
different scores, to the different users. The milter
interface does not provide that function, and so we are,
for now, doing without it. We currently use the lowest
personalized spam score as the overall score for the
message.

The importance of phase 2 became clear when we
found that SpamGuru had some initial throughput
problems, causing the mail queues to back up severely.
The Watson domain processes some 250,000 messages
per day, while the country-code domain in North
America handles some 14,000,000. We were only
operating in the Watson domain at the time, and we
already could not handle the load. Since we were, in
phase 2, still obeying the prior antispam system’s
judgment, users saw no ill effects.

Another feature of our phase 2 performance testing was
our decision to run the old and new solutions on nearly
identical hardware. This choice allowed us to use
standard CPU, disk, network, and memory monitoring
tools to compare the performance of both systems.
That, in turn, allowed us to anticipate which system

3 “Sendmail” is a registered trademark of Sendmail, Inc.

would be better able deal with expected short and long
term increases in load, so we could better understand
long term hardware and maintenance costs of the new
solution. It also allowed us to shake out the code and
fix some software problems.

6 Effectiveness

As we said earlier, once the new antispam system is
stable, its effectiveness at filtering spam is probably the
most important thing to evaluate before making the
switch. This was another important reason for phase 2
in the plan: since SpamGuru is a learning-based system,
though it was bootstrapped with an initial feature
database it needed time to learn from the current stream
of mail

After an initial learning period, SpamGuru consistently
identified and removed a few percent more spam than
the prior system. Had we deployed the new system
outright, during the learning period in which it was
much less effective, we would have had a user
rebellion. Contrast that with the initial antispam
deployment at IBM, where simply labeling some 2/3 of
the spam delighted nearly everyone. User expectations
increase quickly, and once expectations are built,
they’re hard to tear down, and the organization is
committed to maintaining a comparable level of service
thenceforth.

7 Miscellaneous Notes

There are a good number of other issues that one
encounters when deploying any system within a large
corporation. We had to interact with several different
groups that supported different aspects of the
production environment – and, actually, this part went
remarkably well, as we connected with people who
were eager to see better antispam software working.

Nevertheless, we still faced the issues of obtaining
hardware, getting software installed, and setting up
access controls. We had to worry about budgets and
about who could authorize which changes, and we had
many teleconferences to make sure everything was
sorted out. Most notably, we had many delays caused
by periodic “change freezes”, during which progress on
the deployment halted while we waited for end-of-
quarter accounting, and the like.

Lest that all sound bad: it was not. The change freezes
were frustrating, but the rest went quite smoothly
thanks to the people who wanted to see it work, and it
was good to have others check over what we had done
and ask the questions that, often, we were too close to
the system to ask.

8 Summary

In our case, a change was made by choice, from one
antispam solution to another. Other organizations may
also choose to – or have to – change, perhaps for
reasons of effectiveness, perhaps for reasons of cost, or
perhaps for reasons of satisfaction with a vendor’s
product support. For whatever reason the change is
made, it must be made with care, noting particularly the
following:

1. It is harder to replace an antispam solution than to
implement one in the first place. User expectations
are a significant issue.

2. Backup and back-out plans are essential.

3. Phased deployment helps a great deal, allowing
reliability, throughput, and effectiveness to be
measured (and compared).

4. Knowing your user base, and the differences in
needs among different subgroups, is important in
choosing a new system, in configuring the system,
and in maintaining satisfaction during a new
deployment.

5. Feedback in the system is useful for training some
systems, and, for all systems, for judging the
effectiveness and for maximizing user satisfaction.
The presence of a feedback mechanism may be a
deciding factor in the choice of a system.
Alternatively, providing one in-house should be
strongly considered.

6. Feedback also satisfies users, in that it gives them a
formal way to “complain”, and to know that their
complaints will be acted on. This effect also
reduces the support cost that previously went to
dealing with user complaints that were directed
inappropriately (because there was no appropriate
place to direct them).

7. With the variety of antispam mechanisms available
today, choosing something that can implement
several of them together is best (see Leiba and
Borenstein, 2004).

Acknowledgements

The authors thank the other members of the IBM
Research antispam team, the Research Division IS
department, the Office the CIO, and the IBM Global
Services team that worked on the deployment described
herein, with special thanks to Brian Fonseca, Mike
Halliday, Annette Higgins, Matt Karius, and Richard
Segal.

References

von Känel, J., Givler, J.S., Leiba, B., and Segmuller, W.

“Internet Messaging Frameworks”, IBM Systems

Jourmal, vol 37 #1, IBM Corporation, 1998.

Leiba, B. and Borenstein, N. “A Multifaceted Approach

to Spam Reduction”, Conference on Email and

AntiSpam 2004, July, 2004.

Segal, R., Crawford, J., Kephart, J., and Leiba, B.

“SpamGuru: An Enterprise Anti-Spam Filtering

System”, Conference on Email and AntiSpam 2004,

July, 2004.

Rigoutsos, I. and Huynh, T. “Chung-Kwei: a Pattern-

discovery-based System for the Automatic

Identification of Unsolicited E-mail Messages

(SPAM)”, Conference on Email and Anti-Spam

2004, July, 2004.

Segal, R. “Combining Multiple Classifiers”, Virus

Bulletin, February 2005.

Leiba, B., Ossher, J., Rajan, V.T., Segal, R., and

Wegman, M. “SMTP Path Analysis”, Conference

on Email and AntiSpam 2005, July, 2005.

