
Online Discriminative Spam Filter Training

Joshua Goodman
Microsoft Research
One Microsoft Way

Redmond, WA, USA

joshuago@microsoft.com

Wen-tau Yih
Microsoft Research
One Microsoft Way

Redmond, WA, USA

scottyih@microsoft.com

ABSTRACT
We describe a very simple technique for discriminatively
training a spam filter. Our results on the TREC Enron
spam corpus would have been the best for the Ham at .1%
measure, and second best by the 1-ROCA measure. For the
Mr. X corpus, our 1-ROCA measure was a close second best,
and third best by the Ham at .1% measure. We use a very
simple feature extractor (all words in the subject and head-
ers). Our learning algorithm is also very simple: gradient
descent of a logistic regression model.

1. INTRODUCTION
Machine learning techniques can roughly be divided into

two types: generative models (like Naive Bayes), and dis-
criminative models (like Support Vector Machines and Lo-
gistic Regression.) In most text classification tasks, espe-
cially when there is sufficient training data, discriminative
models have outperformed generative models. Hulten and
Goodman [4, Slide 103] surveyed results on the PU-1 spam
corpus, and found that discriminative methods typically beat
generative methods. It was thus surprising in the 2006
TREC Spam competition that all methods except for one
variation of a single entry were best described as generative.

Part of the reason for this was that the rules of the com-
petition made it difficult to enter discriminative techniques.
Because feedback was provided to the system after every
single message, a system that wanted optimal performance
needed to update its parameters after each message. Updat-
ing parameters is expensive for most discriminative tech-
niques, which strongly discouraged their use; indeed, the
only method that was used was Winnow, which can easily
be run with an incremental update scheme.

In this paper, we describe a very simple discriminative
technique that performs extremely well on standard spam
corpora. Our results would have been first, second or third
best on two datasets from the TREC 2005 spam competi-
tion, depending on the corpus and measure.

2. METHOD
Our overall method is very simple. For those familiar

with machine learning, it can be described as a simple linear
model, whose features are the words in the body and headers
of each message; weights for the model are trained using

CEAS 2006 - Third Conference on Email and Anti-Spam,July 27-28, 2006,
Mountain View, California USA

online gradient descent of a logistic regression model.
For those less familiar with the preceding terminology,

the description is not much more complex. We will learn a
set of weights for each word in the body or header of the
message. When a new message arrives, we find this list of
words, and sum the weights associated with those words. In
mathematical terms, we will write w ·x. In this notation, w
is a vector of weights, and x is a vector of 1’s and 0’s, with a
1 in the position corresponding to each word that was found
in the message. The notation w · x simply means to take
the sum of weights associated with each of these words. We
then convert this sum of weights to a probability, using the
“logistic” function,

P (Y = spam|x) =
exp(w · x)

1 + exp(w · x)
(1)

This simple equation converts a number between −∞ and
+∞ to a probability between 0 and 1. If this probability
is over some threshold, say .5 or .9, we predict that the
message is spam; otherwise we predict that the message is
ham.

Next, we update the weights. Technically, this is done
with a method known as gradient descent, which means
computing the derivative of the function in such a way as
to make the correct prediction more likely. In practice, the
function we try to maximize is the log of the probability of
the training data. As it happens, for logistic regression, the
gradient is particularly simple, just (1 − p)× x or p × x de-
pending on the desired prediction, spam or ham, and where p
is the current predicted probability. We use a learning rate,
which makes sure that the step taken in the direction of the
gradient is not too large. Typically, we use rate = 0.02.

The actual algorithm is very simple. Denoting a sequence
of messages by xi, yi, it is:

w = 0; // initialize weights to 0
for each xi, yi

p = exp(xi · w)/(1 + exp(xi · w)
if (p > .5)

predict spam;
else

predict ham;
if (yi == 1)

w = w + (1 − p) × xi × rate

else

w = w − p × xi × rate

The only detail remaining is the exact definition of a word.
A word is defined as either a contiguous sequence of al-



phanumeric characters, or as a contiguous sequence of non-
alphanumeric, non-whitespace characters. We distinguish
between body features and header features. For header fea-
tures, we also distinguish based on the first word of the
header. So, “John” occurring in the Subject: header line is
a different feature than “John” occurring in the To: lines.
No feature selection is performed: all features are kept, even
those that occur exactly once. If a word occurs multiple
times in the body of a message, or multiple times in the
same header type, it is counted only once. Note that we
did not do any decoding of MIME encoded body parts, or
internationally encoded subject lines: these were all simply
processed in their encoded form. We suspect that adding
decoding would lead to improvements, and might be partic-
ularly important for international users.

2.1 Comparison to Other Methods
It is interesting to compare our method to the other meth-

ods at TREC 2005. We start by a quick discussion of gen-
erative versus discriminative techniques. Roughly, a gener-
ative model attempts to describe the distribution of all the
data; that is, a generative model for distinguishing birds
from mammals would contain a long description of each
one, sufficient to draw many different bird-like creatures,
or many different mammalian creatures. A discriminative
model would focus on the differences between them, e.g.
mammals almost always have hair and always feed their
young with milk, while birds almost always have feathers
and almost always have wings. Mathematically, denoting
the spam versus ham distinction as y and the actual mes-
sage as x, a generative model G will typically find the best
G for a model of the form P (y, x|G), while a discrimina-
tive model D will typically find the best model of the form
P (y|x, G). In other words, the discriminative model focuses
on learning the distinction of interest (spam versus ham in
our case), rather than a complete description of the data.

We surveyed all of the major entries in the TREC 2005
spam track – all those which did well and had readily avail-
able descriptions. All but one – one of the 4 variations of
CRM114 – would be better described as a generative model
than as a discriminative model, although most were not
strictly speaking generative.

Bratko et al. [2] entered perhaps the best performing method,
which was also a truly generative model. Essentially, the
method is an n-gram language model (or, equivalently, a
PPM compression model), with clever online adaptation.

Segal [7] entered a method that used “Less Naive Bayes.”
Few details are given, but it appears that this technique is
a generative technique that attempts to model some of the
dependencies that Naive Bayes normally ignores.

DBACL [3] is yet another generative model. Note that
one option for DBACL is to use a discriminative model –
a maxent model – as a component of the overall generative
model. Because of the way the probabilities of this model
are trained – to maximize the probability of the observed
strings, not to maximize the probabilities of the predicted
classes – overall, this is still a generative model.

CRM114 [1] was tested in 4 different configurations. Three
of them used variations on Naive Bayes, while one configu-
ration used Winnow training. Winnow is a discriminatively
trained linear model. In the CRM114 experiments, Naive-
Bayes-like methods beat Winnow on most, but not all mea-
sures.

SpamBayes [5] is yet another filter based roughly on Naive
Bayes techniques, though with many tweaks.

3. RESULTS
Our results are extremely competitive. On the Enron Full

corpus, our results are by some measures better than any
entered into the competition; by all measures they are very
competitive. One key measure used in TREC is the Ham at
.1% measure (percentage of spam caught when the threshold
is adjusted for a .1% false positive rate.) At that setting,
we missed 1.72% of spam, compared to 1.78% of spam for
the next best competitor (ijsSPAM2). For 1-ROCA (area
under the curve – a measure of performance across different
thresholds, lower is better), our number was .022, compared
to .019 for ijsSPAM2, and .052 for the best CRM114 based
system.

On the Mr. X corpus, the very best system in terms
of ROCA was bogofilter, with a score of .045; our system
achieved .047, which would have placed it second by this
measure. For ham at .1%, our system missed 6.6% of spam,
compared to 9.72% for ijsSPAM2, 3.56% for ijsSPAM3, 9.65%
for the best CRM114 system, and 3.9% for bogofilter. Space
precludes listing the full results of our runs, so we have made
them available at http://www.research.microsoft.com/

~joshuago/goodman.full.html and goodman.mrx.html

Note that these results were achieved after the TREC
Spam competition. Our results on Enron data were tuned
(we have a single parameter, learning rate, and we also
tried several other featurization techniques). For the Mr.
X corpus, we thank Gordon Cormack who ran the evalua-
tion blindly for us: we have never seen the corpus, and we
tested only a single piece of code with a single parameter
setting, so this comparison is a fair one.

Our method is also quite fast: it can process about 30
messages per second on a 3.2 GHz dual processor pentium,
even though it is unoptimized perl code.

4. CONCLUSION
Discriminative techniques have received relatively little

attention in the spam fighting community. Some of the most
influential anti-spam research was the seminal work of Sa-
hami et al. [6], and the Graham’s highly cited “A Plan for
Spam”, both of which are based on the prototypical exam-
ple of a generative model, Naive Bayes. In this paper, we
have shown that an extremely simple discriminative model
can produce results that are competitive with, and in some
cases better than, the best reported generative methods.

5. REFERENCES
[1] F. Assis, W. Yerazunis, C. Siefkes, and S. Chhabra.

CRM114 versus Mr. X: CRM114 notes for the TREC
2005 spam track. In TREC 2005 Workbook, 2005. See
http://plg.uwaterloo.ca/ gvcormac/

trecspamtrack05/.

[2] A. Bratko and B. Filipic̈. Spam filtering using
compression models. Technical Report IJS-DP-9227,
Department of Intelligent Systems, Joz̈ef Stefan
Institute, Ljubljana, Slovenia, 2005.

[3] L. A. Breyer. The DBACL text classifier. See http://

www.lbreyer.com/preprints/dbacl.ps.gz, 2005.

[4] G. Hulten and J. Goodman. Tutorial on junk e-mail
filtering. In ICML 2004, 2004.



[5] T. Meyer. SpamBayes: TREC 2005 spam track
notebook. In TREC 2005, 2005. See http:

//plg.uwaterloo.ca/ gvcormac/trecspamtrack05/.

[6] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz.
A bayesian approach to filtering junk e-mail. In
AAAI’98 Workshop on Learning for Text

Categorization, July 1998.

[7] R. Segal. IBM SpamGuru on the TREC 2005 spam
track. In TREC 2005 Workbook, 2005. See http:

//plg.uwaterloo.ca/ gvcormac/trecspamtrack05/.


