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"We use a classifier..."

* Naive Bayes is very popular in spam filtering.
- Almost as accurate in SF as SVMs, AdaBoost, etc.

- Much simpler, easy to understand and implement.

- Linear computational and memory complexity.
* But there are many NB versions.

- Bayes' theorem + naive independence assumptions.
- Different event models, instance representations.

- Differences in performance, some unexpected.



What you are about to

* A short discussion of 5 NB versions.

- Multivariate Bernoulli NB (Boolean attributes)

- Multinomial NB (frequency-valued attributes)

- Multinomial NB with Boolean attributes ( )
- Multivariate Gauss NB (real-valued attributes)

- Flexible Bayes (John & Langley, kernels)

- Better understanding may lead to improvements.
* Experiments on 6 non-encoded datasets.

- Approximations of 6 user mailboxes, preserving
order of arrival, emulating ham:spam fluctuation, ...



What you are going to

* "Bayesian" methods that do correspond to
what is known as Naive Bayes, nor "Bayesian".

- Though it would be interesting to comparel

* Filters that use information than the
bodies and subjects of the messages.

- Operational filters include additional attributes or
components for headers, attachments, etc.

* Filters trained on data from users.

- We only consider personal filters, each trained
incrementally on messages from a single user.



Message
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* Each message is represented by a vector of
m attribute values (features).

* Each attribute corresponds to a token.

- Boolean attributes (token in message or not)
- TF attributes (occurrences of token in message)
- normalized TF (TF / message length in tokens)

* Attribute selection: token must occur in >4
training messages + Information Gain.



Message

Get rich
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From Bayes' theorem:

P(spam):P(X[spam) ~ P ham}-P(X|ham)
e P(ham|%)= YA

* Classify as spam iff P(spam\?c@.

- Varying T€|(,1]: tradeoff between wrongly blocked
hams (FPs) vs. wrongly blocked spams (FNs).




The NB
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* Each Boolean attribute X ; shows if the
corresponding token £.occurs in the message.

* Event model: m Bernoulli trials.

= Selec‘r independen‘rly the value of each attribute.
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The NB
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* Each attribute X; shows how many times the
corresponding token £. occurs in the message.

* Event model: pick with
replacement tokens up to the length of the
message, counted in tokens.



The NB - continued
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In effect a unigram language s
model per category; see refs .
for NB versions... !

] + N ¢ occurrences of . in training spams
[, spam

‘d ‘2 message length in tokens; we
it does not depend on the category.
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NB, aﬁ‘r'ibu’res
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* Same as before, bng_lT Boolean attributes.
X
|1 plt]spam)

@Flspam S v p(F|ham)=..

l

* The multivariate Bernoulli NB (Boolean)
considers more directly missing tokens

@pan 31 1 tlspan 11 pllpam)

» and uses different estimates of p(t]category).



_isn't this ?
* An advantage of the multinomial NB is
supposed to be that it accommodates TFs.

- Previous work [McCallum & Nigam, Schneider, Hovold]

shows it outperforms the (Boolean) multivariate
Bernoulli NB.

. replace TFs with Boolean attributes?

- I't performs even better on Ling-Spam [Schneider].

- With TF attributes, the multinomial NB in effect
assumes that attributes follow Poisson
distributions in each category [Eyheramendy et al.],
which may not be true.



Get rich

The NB
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* Attribute values: TFs / msg. length (in tokens).

* Independence assumption + assume attributes
follow normal dISTI"IbUTIOhS per category.
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estimated from training spams

p(X|ham)=
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BGYCS [John & Langley]

* Same as multivariate Gauss NB, but for each
X; we have as many normal distributions as the

number of values x; has in the training data.
[ ’rh value of X m the training messages

Q‘Spa}n p ‘Spam H Z g Xis I’ll l’/()-spam)

i =1
L : number of dlfferenT values of/ 1/\/M—
X ;in spam training messages spam
D (55 ): normal distribution introduced by the /-th

value of X, in the spam training messages
* Multiple normal distributions allow us to
approximate better the real distributions.




The datasets
* 6 datasets, each emulating

: ham + spam ham : spam
a user mailbox. farmer-d + GP | 3672 : 1500
- Hams from 6 Enron users.  kaminski-v + SH| 4361 : 1496
kitchen-l + BG | 4012 : 1500
- Spams from 3 sources (6. iiiams-w3 + GP 1500 : 4500
Paliouras, B. Guenter, beckss + SH | 1500 * 3675
SpamAssassin+HoneyPot) lokay-m + BG | 1500 : 4500

* Removed self-addressed messages, duplicates

from spam traps, HTML, attachments, headers.
* Varying ham:spam ratios (approx. 3:1, 1:3).

* Available in both raw and preprocessed form.



The da‘rase’rs continued
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* In each dataset, we maintain the original
order of arrival in each category.

* But otherwise, we order randomly, leading to
worst-case ham:spam fluctuation.

* Incremental training/testing (batches of 100).

- The user checks the "spam" folder and retrains
every 100 received messages.



Which NB is bes’r? ROC curves
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* The differences are not always statistically
significant (95% confidence intervals).

* The rankings differ across the datasets.

* But some consistent top/worst performers.
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IS best? - summary

* On all datasets, the multinomial NB did better
with Boolean attributes than with TF ones.

- We confirmed Scheider's observations.
- But stat. significant difference in only 2 datasets.

* The Boolean multinomial NB was also the top
performer in 4/6 datasets, and was clearly
outperformed only by Flexible Bayes (in 2/6).

- But again not always stat. significant differences.

* The multivariate Bernoulli is clearly the worst.



IS best? - continued

* Flexible Bayes impressively superior in 2/6
datasets, and among top-performers in 4/6.

- But skewed "probabilities", not allowing to reach
ham recall > 99.90%, unlike other NB versions.

- The same applies to the multivariate Gauss NB.
* Flexible Bayes clearly outperforms the

multivariate Gauss NB (norm. TF), but not
always the multinomial NB with TF attributes.

* Overall the seems to
be the best, but more experiments needed.



How many should T use?
* We tried 500, 1000, 3000 (token) attributes.

* Best results for 3000 attributes, but very
small differences; see paper.

* May not be worth using very large attribute
sets in operational filters.

- Though linear computational complexity.

- Training: O(attributes x training_msgs).

- Classification FB: O(attributes x training_msgs).
- Classification others: O(attributes)




Anything to then?
* Don't just say "we use Naive Bayes"...
* Don't use the multivariate Bernoulli NB.

* If you use the multinomial NB, try Boolean.

- You may also want to consider n-gram models and
other improvements; see references.

* Worth investigating further Flexible Bayes.
* Very large attribute sets may be unnecessary.

* 6 new noh-encoded emulations of mailboxes.

- Six real mailboxes coming soon, but PU encoding.



