# Batch and On-line Spam Filter Comparison

Gordon V. Cormack

Andrej Bratko





Jozef Stefan Institute



TREC – Text Retrieval Conference (On-line) chronological order, immediate feedback real email messages (and filters!) soft classification: spamminess score Receiver Operating Characteristic (ROC) Classical Evaluation (Batch) k-fold cross validation contrived email messages (and filters!) hard classification: *spam* or *ham* accuracy, weighted accuracy, Total Cost Ratio (TCR)



**TREC 2005 Public Corpus** on-line test (TREC methodology) 10-fold cross validation (random splits) 9:1 chronological split on-line test sequence batch test set tokenized, obfuscated versions of same corpora Ling Spam & PU1 Corpora 10-fold cross validation splits, tokenization, obfuscation defined by corpora



X<sup>2</sup> (Graham/Robinson) Bogofilter (*Relson, Louis et al.*) Support Vector Machine (Vapnik) SVM<sup>light</sup> (Joachims) Logistic Regression (Fisher) LR-TRIRLS (Komarek) Prediction by Partial Matching (Cleary & Witten) Adaptive PPM-D Classifier (Bratko) Dynamic Markov Modeling (Cormack & Horspool) Adaptive DMC Classifier (Cormack)



# Prediction by Partial Matching

For each class: left context occurrences left context+prediction *log-likelihood* estimate compressed length Smoothing/backoff: zero occurrence problem Adaptation: increment counts assuming in-class





Context (509 spam, 1 ham)

# ai.stanford.e



Prediction (0 spam, 1 ham)

ai.stanford.E



Prediction (509 spam, 0 ham)





CORMACK & BRATKO BATCH AND ON-INE SPAM FILTER COMPARISON LEAS 2000



### 10-Fold Cross Validation









Misclassified Hams (of 787)



Batch, On-line (1-ROCA)%

|            | On-line                  |                            | Batch          |                          |
|------------|--------------------------|----------------------------|----------------|--------------------------|
| Method     | Full Corpus              | 9:1 Chronological          | 10-fold C.V.   | 9:1 Chronological        |
| DMC        | .013 (.010018)           | .0003 (.0000003)           | .015(.012018)  | .003 (.001006)           |
| PPM        | .017 (.014021)           | .0007 ( $.0001$ - $.005$ ) | .006 (.004009) | .003 ( $.001$ - $.008$ ) |
| Bogofilter | .048 $(.038062)$         | .002(.0001041)             | .020 (.012033) | .009 (.003029)           |
| LR         | .068 $(.058079)$         | .020 (.003135)             | .016(.012021)  | .12(.001-10.1)           |
| SVM        | .075 ( $.064$ - $.088$ ) | .007 ( $.0015$ - $.033$ )  | .021 (.015029) | .13(.003-5.6)            |



### Effect of Order/Adaptation

|        | Training     | Testing Regimen      |                          |                |  |
|--------|--------------|----------------------|--------------------------|----------------|--|
| Filter | Regimen      | On-line Random Order | On-line Corpus Order     | Batch          |  |
| DMC    | Random Order | .01 (.006017)        | .007 (.004011)           | .009 (.006015) |  |
| DMC    | Corpus Order | .035 $(.026047)$     | .037 ( $.024$ - $.057$ ) | .31 (.2537)    |  |
| PPM    | Batch        | .0052 (.00301)       | .0053 (.003009)          | .0055 (.00301) |  |

#### Tokenization, On-line





#### Tokenization, Batch





### Tokenization/Obfuscation

|              | On-line                  |                       | Batch                    |                   |
|--------------|--------------------------|-----------------------|--------------------------|-------------------|
| Method       | Full Corpus              | 9:1 Chronological     | 10-fold C.V.             | 9:1 Chronological |
| DMC          | .013 (.010018)           | .0003 (.0000003)      | .015 (.012018)           | .003 (.001006)    |
| tokenized    | .025 ( $.020$ - $.032$ ) | .0006 (.0001006)      | .025 $(.019033)$         | .001 (.000013)    |
| obfuscated   | .037 ( $.030$ - $.045$ ) | .0004 ( $.00000042$ ) | .029 ( $.023$ - $.037$ ) | .002 (.001006)    |
| PPM          | .017 (.014021)           | .0007 (.0001005)      | .006 (.004009)           | .003 (.001008)    |
| tokenized    | .038 ( $.033$ - $.045$ ) | .0016 (.0003009)      | .012 (.009016)           | .005(.002012)     |
| obfuscated   | .075 ( $.066084$ )       | .0046 (.0016013)      | .020 ( $.014$ - $.027$ ) | .015 (.006035)    |
| Bog of ilter | .048 (.038062)           | .002 (.0001041)       | .020 (.012033)           | .009 (.003029)    |
| obfuscated   | .13(.1115)               | .024 (.00414)         | .055 ( $.045$ - $.068$ ) | .036 (.01211)     |
|              | -                        |                       |                          |                   |



Gradient Descent Logistic Regression (Goodman) On-line Filter Fusion (Lynam & Cormack) Classical machine learning (Cast of thousands) Naïve Bayes (which naïve Bayes?) **kNN** Perceptron Winnow Decision trees Boosting Stacking



### Goodman's Gradient Descent LR





#### Stacking – 53 TREC Filters





### Ling Spam Corpus





## PU1 Corpus





## Conclusions

Batch and on-line are different good filters can be adapted to do both well Feature engineering is important email is not just a bag or sequence of tokens Real filters beat contrived ones even on contrived corpora PPM and DMC effectively filter spam fast (100s of messages/sec) voracious appetite for RAM (0.5 - 2.0 GB)