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Abstract

A new trend in email spam is the emergence of
image spam. Although current anti-spam tech-
nologies are quite successful in filtering text-based
spam emails, the new image spams are substan-
tially more difficult to detect, as they employ a
variety of image creation and randomization al-
gorithms. Spam image creation algorithms are
designed to defeat well-known vision algorithms
such as optical character recognition (OCR) al-
gorithms whereas randomization techniques en-
sure the uniqueness of each image. We observe
that image spam is often sent in batches that con-
sist of visually similar images that differ only due
to the application of randomization algorithms.
Based on this observation, we propose an image
spam detection system that uses near-duplicate
detection to detect spam images. We rely on
traditional anti-spam methods to detect a sub-
set of spam images and then use multiple image
spam filters to detect all the spam images that
“look” like the spam caught by traditional meth-
ods. We have implemented a prototype system
to achieve high detection rate while having a less
than 0.001% false positive rate.

1. Introduction
Spam message volumes have doubled over the past year
and now account for about 80% of the total messages on
the Internet. A major reason for the increased prevalence
of spam is the recent emergence of image spam (i.e. spam
embedded in images). Image spam volumes nearly quadru-
pled in 2006, increasing from 10% to 35% of the overall
volume of spam; worse, the volume of image spam contin-
ues to rise[3, 21]. The situation has significantly frustrated
end-users as many image spam messages are able to defeat
the commonly deployed anti-spam systems. In order to re-
duce the impact of spam, it is crucial to understand how to
effectively and efficiently filter out image spam messages.
Spammers have recently begun developing image-based
spam methods to circumvent current anti-spam technolo-
gies since existing anti-spam methods have proved quite
successful at filtering text-based spam email messages.
Early image-based spam simply embedded advertising text
in images that linked to HTML formatted email so that its
content could be automatically displayed to end-users while

being shielded from text-based spam filters. As spam filters
started using simple methods such as comparing the hashes
of image data and performing optical character recognition
(OCR) on images, spammers have quickly adapted their
techniques. To combat computer vision techniques such as
OCR, spammers have begun applying CAPTCHA (Com-
pletely Automated Public Turing Test to Tell Computers
and Humans Apart) techniques. These techniques distort
the original image or add colorful or noisy backgrounds so
that only humans can identify the intended message [2].
Once spammers have applied an image creation algorithm
to make a message difficult to detect with computer vision
algorithms, they apply further randomization to construct
a batch of images for delivery. The additional randomiza-
tion defeats hash-based detection mechanisms. The result
is that current image spam methods present serious chal-
lenges for anti-spam systems.
Although some research has been done to distinguish spam
images from non-spam images by using computer vision
techniques including filtering noisy images for recogniz-
ing embedded text or monitoring color saturations in an
image[1], such methods tend to have high false positive
rates, labeling ham (non-spam) as spam. This is because
computer vision techniques have not been able to defeat
CAPTCHA. Furthermore, it is difficult to predict what
spam images will look like as they are constantly evolving
to evade detection. In addition, sophisticated computer
vision techniques often require substantial CPU resources,
making them less practical in high-volume environments.
We believe that an effective image spam detection system
should satisfy several requirements. First, it should be ac-
curate, detecting most image spams while maintaining a
low false positive rate. Second, it should be efficient, pars-
ing incoming emails with images at modern WAN speeds.
Third, it should be extensible, allowing new image spam fil-
tering methods to be added to deal with quickly evolving
image spam techniques.
This paper proposes an image spam detection system to
satisfy the requirements above. The basic idea is to use
traditional anti-spam methods to detect some image-based
spam messages and then use fast near-duplicate detection
filters to detect the variations of known spam images. The
system we propose is based on two observations. The first
is that traditional spam detection methods such as honey-
pots, message header analysis or human reporting mecha-
nisms can detect some image spam messages. The second
is that image spam messages are typically sent in large



batches where the messages in each batch are visually sim-
ilar, although the variations can be sophisticated. For ex-
ample, spammers often design a template image and apply
various randomized alterations or noise to the template
before sending it out to each end user. Figure 3 and 4
show some spam image samples. We believe that this is
because spammers still want to deliver clear information
to end users and they want to use efficient methods to gen-
erate millions of unique spam images while not obscuring
the template image too much.
Rather than studying the image itself to determine whether
the particular image is a spam image or not, our system
adopts an alternative approach. We use very efficient near-
duplicate detection techniques to find spam images that
are variations of other spam images caught by traditional
anti-spam methods. Thus our system is complementary to
the existing anti-spam system to help detect image spams
missed by the traditional system.
We have designed and implemented a prototype of the pro-
posed image spam detection system. The system supports
the use of multiple image spam filters, allows users to plug
in new filters and to specify different aggregation meth-
ods among the filters including AND (all filters agree), OR
(one of the filters decides) and VOTE (certain number of
filters agree). We have implemented three image spam fil-
ters using different near-duplicate detection techniques in
our prototype system. Our experiments with a suite of im-
age spam benchmark and 10 million non-spam images show
that using VOTE method can effectively detect variations
of most kinds of image spam messages while maintaining
the false positive rate to less than 0.001%.

2. Previous work
Nowadays, spam filters are widely deployed and various
anti-spam techniques have been developed. At the network
layer, systems such as Mail Avenger [12] track source, des-
tination, network path, and software version information
for analysis by spam filters. Many anti-spam systems also
use a combination of whitelists, blacklists, and so-called
greylists that force legitimate clients to re-send messages
since spammers often do not bother doing so [10]. Other
common techniques include block lists distributed via DNS
that identify addresses assigned to dialup users or known
open relays and challenge-response systems that automati-
cally build whitelists. Most systems such as Mail Avenger,
Spam Assassin, and SpamGuru [12, 20, 18] use multiple
techniques, including multiple classifiers, to identify spam.
Filters for text-based spam, including plain text and
HTML e-mail, have employed a variety of statistical tech-
niques, particularly Bayesian inference [17, 7]; these statis-
tical filters appear to classify text-based e-mail well. An-
other popular approach is the use of so-called “fuzzy sig-
natures” such as those employed by Vipul’s Razor [23] and
the Distributed Checksum Clearinghouse [4]. Fuzzy sig-
natures are designed in such a way that the signature for
substantially different messages are unlikely to collide but
that the signature for very similar, although not necessar-
ily identical, messages will collide with high probability.
Systems such as DCC allow users at different sites to share
fuzzy signatures for reported spam.

Although image-based spam has been around for some
time, recent reports and anecdotal evidence suggest that
there has been significant growth both in the volume of
image-based spam and in the percentage of spam that uses
image attachments to convey its message [14, 21, 8]. Un-
like earlier image-based spam, current image spam is ran-
domized to avoid signature based anti-spam techniques.
Since the majority of spam is now delivered through bot-
nets [15], spammers have the bandwidth and computa-
tional resources necessary to customize individual spam
images extensively.
Although traditional spam filters that rely on analysis of
sender, message header and various other information can
detect some of the image spams without looking into the
image itself, other image spams still pass through the spam
filter since spammers try very hard to make everything
except the spam image itself look innocent. Some recent
research studied the image classification using computer vi-
sion techniques. One approach[1] is largely based on the ex-
traction of text regions in the images of interest and SVM.
This method can achieve about 85% detection rate with
about 15% false positive rate. Wu et al. [24] have iden-
tified a number of useful visual features including banner
images, computer generated graphics and embedded-text,
and use SVM to train the classifier. Their approach can
achieve about 81% detection rate with about 1% false posi-
tive rate. Although the results are encouraging, we believe
that the misclassification rate of non-spam images needs to
be dramatically lower in order to make image spam detec-
tion practical.
Our image spam detection system utilizes content-based
image similarity search techniques. Much work has been
done in this area [5, 16, 19, 22]. Recently, researchers
have used content-based image search techniques for near-
duplicate image detection [9, 25]. The image features they
use are usually complex and slow to compute and compare.
Given the large number of image spams that are recieved
every day, our challenge is to achieve high effectiveness and
high efficiency at the same time.

3. Main Idea
Our image spam detection system takes advantage of the
nature of spam messages: they have to be sent in large
quantity, and the machine generated spam images within
the same batch will look similar to each other. Since spam
messages are sent in large quantity, some of them can be
detected using traditional spam detection methods such as
honeypots (dummy email accounts set up to attract spams)
or sender analysis, as well as those reported by end users.
Once we have identified some of the spam images via tra-
ditional spam detection methods, we can then detect their
near-duplicates as spams even if those emails evade tradi-
tional spam filters.
Figure 1 shows the architecture of our image spam detec-
tion system: the traditional spam filters not based on im-
age content analysis; a set of image spam filters that detect
near-duplicate images; and an evaluator to aggregate the
results from multiple image spam filters. Each image spam
filter is made up by its feature extraction unit, non-spam
feature DB, spam feature DB and spam image detection
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Figure 1: Image spam detection system architec-
ture.

unit as shown in Figure 2.
An important issue in designing a near-duplicate detection
system is to figure out how “near” when comparing two
images with each other. In other words, we need to figure
out a distance threshold in the filter’s feature vector space
of the images. If a threshold is too small, the filter tend
to achieve low false positive rates, but low detection rates.
Traditionally, threshold will be derived by training with a
spam image dataset. We took a different approach, deriv-
ing thresholds by training with a non-spam image dataset.
The idea is to learn what the “non-spam” images look like
and use the information to bound the threshold to achieve
high detection rates and low false positive rates. The intu-
ition behind of this approach is that the look of non-spam
images are relatively stable over time, whereas image spam
methods are constantly evolving and new spams may have
different looks. We collect a large collection of known non-
spam images and save it in the non-spam training image
DB. Each deployed image spam filter (or a new image spam
filter plug-in) will extract features from all the non-spam
images offline and store them in the non-spam feature DB
for future use.
When deployed in real time, the image spam detection sys-
tem will work together with the traditional anti-spam fil-
ters. All incoming emails will go through the traditional
anti-spam filters first. The emails without any embedded
images will be handled by traditional filter alone. The
emails with embedded images will be filtered and labeled
first by the traditional spam filter (such as analyzing their
headers) and then passed to our image spam detection sys-
tem.
All embedded images will be processed by all image spam
filters. The feature extraction unit of each individual image
spam filter will extract a feature vector from the image. If
the image is labeled as spam by the traditional anti-spam
filter, the feature vector will be inserted into the spam fea-
ture DB. During the insertion, we will calculate its distance
from all the feature vectors stored in the non-spam feature
DB and set the smallest distance as the detection threshold
associated with this particular spam image. This step will
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Figure 2: An image spam filter.

essentially create a high dimensional sphere in the feature
space such that any other feature vector that falls into the
sphere will be considered as a spam.
An image spam filter then uses the spheres defined by
the thresholds in the spam feature DB to detect near-
duplicates of the known spams. Conceptually, the image
spam filter will compare the feature vector of an image (not
labeled by the traditional spam filter) with all the feature
vectors in the spam feature DB. If the feature vector falls
in any of the “sphere” of a known image spam, the email
associated with this image will be considered as a spam by
this specific image spam filter.
We allow multiple image spam filters to work together to
increase the coverage of spam categories, improve the de-
tection rate for each category while maintaining low false
positive rate. Our idea is to use an evaluator to aggregate
the results from multiple filters. We currently consider
three methods:

• “AND”: an image is classified as spam if and only if
all filters decide it is spam. This method will lead to
relatively low detection rates and very low false posi-
tive rates.

• “OR”: an image is classified as spam if any filter de-
cides it is spam. This method will lead to high detec-
tion rates and relatively high false positive rates.

• “VOTE”: an image is classified as spam if a speci-
fied number of filters decide it is spam. This method
will provide balanced detection rates and false positive
rates between AND and OR.

By supporting multiple aggregation methods, our system
provides users with more flexibility.

4. Implementation
To evaluate our idea, we have implemented a prototype
image spam detection system. This section describes the
implementation details of our system components.
We use Mail Avenger [12], a customizable SMTP server,
together with SpamAssassin mail filter [20] as the tra-
ditional spam filter in our system. Each incoming mes-
sage was annotated with the output available from Mail



Avenger. Mail Avenger was configured to deliver mail un-
conditionally but to log the TCP fingerprint and results of
a traceroute back to the mail relay as well as the results of
DNSBL lookups for about twenty different popular black
lists. Once messages to the mail server were spooled, they
were run through the SpamAssassin mail filter. The real-
time feedback from Mail Avenger and SpamAssassin were
used to determine how existing tools would classify incom-
ing spam at delivery time.
We store 100,000 legitimate images in our non-spam image
DB. They are sampled from two online photo sharing sites
photo.net and pbase.com and from a COREL stock photo
collection. The images are stored in the database so that
new image spam filter can be trained when introduced into
the system.
Image spam filters are designed to detect variations of im-
age spams using different image near-duplicate detection
techniques. Our system supports multiple image spam fil-
ters and allow users to plug in new filters for emerging
image spam techniques. Figure 2 shows the components of
an image spam filter.
We have leveraged Ferret toolkit [11] to construct image
spam filters, manage spam feature DB, and perform near-
duplicate detections. It is convenient to use since it uses
advanced indexing techniques to perform high-speed simi-
larity searches. To construct an image spam filter, all one
needs is to plug in a feature extraction unit and the defi-
nition of its distance function.
The feature extraction unit converts an image to a fea-
ture vector representation for near-duplicate detection pur-
pose. If two images are near-duplicates, their feature vec-
tors would be very close to each other in the feature vector
space. The following properties are highly desirable for the
feature extraction unit:

• Efficient : The unit should be able to process incoming
images very efficiently in order to match the through-
put of targeted mail servers.

• Effective : Spammers typically add random “noises”
to each spam image. For effective detection, the unit
should produce features that are relatively insensitive
to those added noises.

• Distinctive : To minimize false positive rate, the unit
should generate features that can distinguish spam im-
ages from non-spam images.

We have constructed three filters (see Section 6).
The system has a spam feature DB for each filter. The DB
stores all feature vectors extracted from all known spam
images labeled by the traditional anti-spam filter, and an
associated threshold value for each feature vector. The
threshold value is the smallest distance between the feature
vector of the spam image and the feature vectors of all the
100,000 non-spam images. If a new known spam image
is within the threshold value distance away from an old
known spam image, it will be treated as the spam from
the same batch and no new entry will be inserted into the
spam feature DB to save space. Older known spam feature
could be retired if it had not been able to detect spams for
a while.
We have implemented three aggregation methods AND,

(a) wave (b) animate

(c) deform (d) rotate

Figure 3: Examples of spam construction tech-
niques.

OR, and VOTE in the evaluator. See previous section for
their aggregation functionalities.

5. Known Image Spam Techniques
Spam images are typically generated in two steps. The first
step is template construction, where a spam image template
is constructed with the intended content for end user. The
main goal is to use different methods such as CAPTCHA
to defeat computer vision (such as OCR-based) anti-spam
techniques. The second step is randomization, where a
large number of spam images can be generated from the
template image using various randomization techniques,
in order to defeat signature-based anti-spam techniques.
This section describes the template construction and ran-
domization methods used in the image spam datasets we
have collected.
Construction methods: among the spam images we
have collected, we have identified four template construc-
tion methods:

• wave : See Figure 3 (a). This method uses wavy text
to make it more difficult for OCR recognition.

• animate : See Figure 3 (b), the URL in the web
browser is animated. By using animations in the GIF
format, it is harder to detect the real spam content.

• deform : See Figure 3 (c). This method uses deformed
text (such as irregular handwritten fonts, different font
colors) in order to defeat OCR.

• rotate : See Figure 3 (d). This method rotates the
text to a certain angle such that it is not horizontal
and more difficult for OCR. Depending on the number
of different angles can be used, this technique can also
be used as a randomization technique (see below).

Randomization methods: The goal is to add random
noises to a template spam image in order to generate a large
number of spam images to defeat traditional signature-
based anti-spam techniques. From the spam images we
have collected, we have observed 17 randomization tech-
niques:

• shift : template image is shifted horizontally or verti-
cally on the canvas. See Figure 4 (1), (7).

• crop : template image is cropped differently (some-
times sacrificing part of content). See Figure 4 (2),



(3) and (13).

• size : slight variations of the size (height and width)
of the template. For example, this can be achieved
by writing the same template content on canvas of
different sizes or resizing an image. See Figure 4 (4),
(10).

• dots : adds random dots (or speckles). See Figure 4
(5), (11), and (13).

• bar : adds a randomized bar (of pixels with similar
colors) to the top, middle, or end of a template image.
See the blue bars in Figure 4 (4).

• frame : adds a frame (of randomized pixels and differ-
ent thickness) to the template image. See the frames
in Figure 4 (5).

• fonttype : uses different font types for the text. See
Figure 4 (5), (7).

• fontsize : uses different font sizes for the text. See
Figure 4 (11), (12).

• fontcolor : uses different font colors for the text. see
Figure 4 (8). Further randomization is achieved by
using different colors within each individual letter. See
Figure 4 (7).

• line : uses randomized lines in the background. See
Figure 4 (11).

• linecolor : uses randomized lines of different colors in
the background. See Figure 4 (6), (7).

• shape : uses randomized shapes (such as polygons or
ellipse) in the background. See the pink shapes in
Figure 4 (3).

• rotate : rotates the text to a random angle. See Fig-
ure 4 (6).

• bits : uses a few randomized bits either in the meta-
data or at pixel level, resulting in different image files
but no noticeable different images. See Figure 4 (14).

• content : uses different wording (but of similar theme)
for each line in a multi-line message to achieve a com-
bined high level of randomness. See Figure 4 (8).

• fuzzy : uses fuzzy text and lines. See the fuzzy text
and discontinued lines in Figure 4 (10).

• url : uses different URLs (pointing to the same prod-
ucts). See Figure 4 (9), notice the only difference is
the URL.

Figure 4 shows the samples of spam images, some of which
use combinations of the methods above1.

6. Image Spam Filters
Since spammers use different randomization methods to
introduce noises to spam images, a single feature might
not be able to effectively detect all variations. In our sys-
tem, we have experimented with 3 filters based on color
histogram, wavelet, and orientation histogram.
1We did not collect enough of the “slice-and-dice” image
spams (where the spammer randomly slice the original
spam image into several small pieces) mentioned in other
report to form a batch.

6.1 Color Histogram Filter
The color histogram is a simple feature and can be calcu-
lated very efficiently by one simple pass of the whole image.
We have used 64-dimensional color histogram based in the
RGB color space. Values in each of the three color chan-
nels (R,G,B) are divided into 4 bins of equal size, resulting
in 4 × 4 × 4 = 64 bins in total. For each bin, the amount
of color pixels that falls into that particular bin is counted.
Finally it is normalized so that the sum equals to one.
We use L1 distance to calculate the distance between two
color histogram features. For images represented by D-
dimensional real-valued feature vectors, the L1 distance of
the pair of points X = (X1, . . . , XD) and Y = (Y1, . . . , YD)
has the form:

d(X, Y ) =
DX

i=1

|Xi − Yi|

We adopt color histogram in our system for its simplicity
and efficiency.
The color histogram is effective against randomly added
noises and simple translational shift of the images. For the
spam randomization techniques described in section 5, the
color histogram is designed to handle shift, size, dots, bar,
frame, fonttype, fontsize, line, rotate, bits, content, fuzzy,
url.

6.2 Haar Wavelet Filter
2-D Haar wavelet transformation is popular in image anal-
ysis and can be calculated efficiently in O(n) time. We
convert the color image into a 256 × 256 grayscale image
and apply 2-D Haar wavelet transformation on it. We then
take the first 4×4 wavelet coefficients at low resolution end
of the matrix. This essentially provides the low resolution
information about the original image. L1 distance measure
is used to calculate the feature distance.
The Harr wavelet feature is mainly targeted for these ran-
domization techniques: size, dots, bar, frame, fonttype,
fontsize, line, shape, bits, content, fuzzy, url.

6.3 Orientation Histogram Feature
Orientation histogram feature provides the histogram of
orientation of edges in the image. It was shown to be effec-
tive in hand gesture recognition in [6] and can be calculated
by one simple pass of the image. We start by calculating
the orientation of each pixel, then bin the orientation of
each pixel into 36 groups, each of which is 10 degrees. Af-
ter that, we use a 1 4 6 4 1 filter to blur the orientation
histogram. The final histogram is normalized and L1 dis-
tance is used to calculate the feature distance.
Orientation histogram is designed to work better with these
randomization techniques: shift, crop, size, fontsize, font-
color, linecolor, bits, url.

7. Evaluation
We would like to answer the following questions:

• How effective is each image spam filter?

• How well do multiple image spam filters work to-
gether?

• What are the performance implications of these filters?



• How efficiently can we propagate spam image signa-
tures for distributed spam detection?

To answer these questions, we have conducted experiments
with our prototype system using a collection of spam im-
ages and non-spam images.

7.1 Evaluation Datasets
We use two different kinds of images in our evaluations:
spam images and legitimate (“ham” or non-spam) images.
Since many new kinds of image spams have emerged re-
cently, the image spam techniques used a year ago are sub-
stantially different from the current ones. We have decided
to create an image spam dataset using image spams col-
lected during recent three months (Dec. 2006 to Feb. 2007)
instead of using an old public spam corpus.
Our spam images are collected from seven different email
accounts. These are personal email accounts including ac-
counts from two popular online webmail service providers,
one IT company account, and three education accounts.
All images in the spam emails, including user identified
ones, are collected. Duplicate spam images are removed
by using SHA-1 hash; some malformed images are also re-
moved. All the remaining images are manually classified
into batches based on their content. We also extract the
time stamp at the receiver for each image to verify the
batches or further split the batches whenever necessary.
We have removed batches that contain only a single image
for our benchmark. The resulting spam image dataset con-
tains 1071 images in 178 different batches. The min, max,
average and standard deviation of the batch sizes are 2, 50,
6.02, 6.39 respectively. The full spam image benchmark is
available online [13].
In order to evaluate false positive rates, we have con-
structed a non-spam image dataset. Since there are few
publicly available non-spam email repositories (especially
for emails containing images) due to privacy concerns, we
have used samples of photos downloaded from popular
photo sharing web sites as our non-spam images. We use
two sets of non-spam images, one for training and one for
testing:

• Training non-spam dataset: 100,000 image randomly
selected from over 600,000 images downloaded from
PBase and Photonet, and the COREL stock photo
collection.

• Testing non-spam dataset: 10 million images down-
loaded randomly from the Flickr web site.

We believe they represent a good proportion of the kind of
non-spam images sent via email.

7.2 Individual Image Spam Filter Results
We begin by evaluating the effectiveness of each individual
image spam filter in isolation. To evaluate the effective-
ness of a filter, we present the system with a single marked
spam image, the remaining unmarked spam images, and
10 million non-spam images and see if our filter can detect
the unmarked spam images in the same batch. Table 1
shows the false positive and detection rates for each spam
category using different image spam filters. For each filter,
the first group (shown in bold) contains the categories that
the particular filter is designed to handle while the second

group shows the remaining categories. The last row shows
the overall false positive and detection rate for all the cat-
egories.
The results show that all three filters did well in “targeted”
categories in terms of detection rates and false positive
rates. The color histogram filter was able to achieve per-
fect detection rates for 13 out of 17 targeted categories,
and more than 96.7% for the remaining 4 categories. The
false positive rates of all categories except one (shift) are
below 0.006%. The wavelet filter achieves perfect detec-
tion rates for all targeted categories while keeping the false
positive rates below 0.0009%. The orientation histogram
filter achieves perfect detection rates for 4 out of 7 tar-
geted categories, while keeping the false positive rates be-
low 0.0007%. The detection rates for the remaining 3 cate-
gories are 94.2%, 88.2% and 83.3% with false positive rates
0.00179%, 0.02089% and 0.00052% respectively.
The filters achieve good detection rates in more than half
of the “un-targeted” categories. The main reason is that
although a filter is not designed specifically to handle these
categories, spammers tend to be conservative in randomiz-
ing images since they must preserve the readability of the
spam messages. This makes makes some of the randomiza-
tion techniques less effective. All individual filters achieve
low false positive rates.

7.3 Combined Image Spam Detection Results
To study the effect of aggregating multiple spam filters, we
have experimented with three simple aggregation methods:
“AND”, “OR”, and “VOTE”. Table 2 shows the results
using all three methods to aggregate results from multiple
spam filters. The results are presented in two groups: the
first group is the union of all “targeted” categories from
three spam filters, the second group shows the remainder of
the categories. The last row shows the overall false positive
and detection rates for all the categories.
We can see that the “AND” method consistently achieves a
false positive rate of zero, but is effective in only about half
of all spam image categories. Because individual filters are
focusing on different features of the images, when all filters
agree collectively, we expect a minimum false positive rate.
The low false positive rate can be useful for certain use
cases.
The “OR” method delivers the best spam detection rates at
the cost of higher false positive rates. It detects most of the
spam images, including most of “un-targeted” ones. For
some use cases, a false positive rate of 0.17% is considered
tolerable, but other use cases require lower false positive
rates.
The “VOTE” method provides a compromise between false
positive and detection rates; it holds the false positive rates
below 0.0002% for all targeted categories, while achieving
good detection rates. The only category that it didn’t do
well is shift.dots.line, which exhibits a 50% detection rate.
For the un-targeted categories, VOTE keeps false positive
rates below 0.0005% and has good detection rates (63.7%,
100%, 43%, 100%, and 33%, respectively). We can un-
derstand effect of VOTE better if we study one particular
category closely, say “shift”. We get false positive rates of
about 0.024%, 0.011%, 0.021% and detection rates of about
99.1%, 92.3%, 88.2% from three filters. After VOTE, we



Category fpos% det%
dots 0 100.0
shift, fonttype, 0.00010 100.0
dots
shift, bar 0.00012 100.0
bits 0.00016 100.0
shift, fonttype, 0.00023 100.0
dots, frame
shift, dots, url 0.00044 100.0
fontsize, dots, 0.00046 100.0
line
shift, dots, line 0.00077 100.0
shift, fuzzy 0.00118 100.0
size, bar 0.00126 100.0
size 0.00126 100.0
shift, url 0.00128 100.0
size, dots 0.00161 100.0
shift 0.02401 99.1
shift, dots, 0.00259 97.7
fontsize
shift, dots 0.00617 97.4
size, fuzzy 0.00381 96.7
crop, dots, shape 0.00012 100.0
shift, linecolor, 0.00014 100.0
rotate
shift, linecolor, 0.00039 100.0
fontcolor
crop 0.00167 100.0
shift, linecolor 0.00390 92.8
shift, linecolor, 0.03452 42.8
fontcolor, fonttype
shift, content, 0.00009 0.0
fontcolor
crop, dots 0.00027 0.0
overall 0.08655 84.7

Category fpos% det%
bits 0.00002 100.0
size, bar 0.00003 100.0
fontsize, dots, 0.00003 100.0
line
dots 0.00004 100.0
size 0.00012 100.0
size, fuzzy 0.00032 100.0
size, dots 0.00088 100.0
shift, dots, url 0 100.0
shift, fonttype, 0.00001 100.0
dots, frame
shift, fuzzy 0.00003 100.0
crop 0.00004 100.0
crop, dots 0.00005 100.0
shift, fonttype, 0.00009 100.0
dots
crop, dots, shape 0.00053 100.0
shift 0.01138 92.3
shift, dots, 0.00013 88.6
fontsize
shift, dots 0.00061 85.9
shift, linecolor, 0.00001 75.0
rotate
shift, linecolor, 0.00936 69.2
fontcolor, fonttype
shift, url 0.00004 62.5
shift, content, 0.00001 60.0
fontcolor
shift, linecolor 0.00012 56.5
shift, dots, line 0 50.0
shift, linecolor, 0.00006 25.0
fontcolor
shift, bar 0.00002 0.0
overall 0.02393 82.3

Category fpos% det%
shift, linecolor, 0.00029 100.0
fontcolor
bits 0.00052 100.0
crop 0.00061 100.0
shift, url 0.00065 100.0
shift, linecolor 0.00179 94.2
shift 0.02089 88.2
size 0.00052 83.3
shift, linecolor, 0.00028 100.0
rotate
fontsize, dots, 0.00031 100.0
lint
shift, dots, url 0.00060 100.0
shift, bar 0.00065 100.0
dots 0.00073 100.0
shift, fonttype, 0.00077 100.0
dots
size, fuzzy 0.00106 100.0
shift, dots, 0.00081 89.8
fontsize
shift, dots 0.00286 89.1
shift, content, 0.00016 80.0
fontcolor
crop, dots, shape 0.00007 75.0
shift, linecolor, 0.02616 62.2
fontcolor, fonttype
shift, dots, line 0.00011 50.0
shift, fuzzy 0.00075 50.0
crop, dots 0.00007 33.3
size, bar 0.00082 33.3
size, dots 0.00103 33.3
shift, fonttype, 0.00109 28.6
dots, frame
overall 0.06360 81.6

(a) Color Histogram (b) Haar Wavelet (c) Orientation Histogram

Table 1: Results using different image spam filters. The categories shown in bold are the “targeted”
group for each filter.

can achieve a false positive rate of 0.00018% and a detec-
tion rate of 96.4%.
Our results show that multiple filters can work better than
an individual filter. For example, the VOTE method can
deliver a better overall detection rate than each individual
filter, while reducing the overall false positive rate by al-
most two orders of magnitude compared to each individual
filter. This supports our design goal of making the system
extensible.

7.4 Image Spam Filter Speed

feature training detection
extraction time time
time (ms) (ms) (ms)

color histogram 20.9 19.8 2.0
Haar wavelet 5.4 9.4 1.1
orientation
histogram 14.5 14.4 1.5

Table 3: Image Spam Filter Speed.

In order to understand the performance implications of the
image spam filters, we have measured the processing time
for the main components of our system on a P4 3GHz test

machine. Table 3 shows the processing time for each image
filter: image feature extraction time (assuming the image is
rendered into memory ahead of time), training time where
a new “known” spam image is inserted into the system
and its threshold value is determined by comparing with
100,000 known non-spam images, and detection time where
an incoming image’s feature is compared with the features
in the spam image feature database (we assume there are
10,000 spams in the database). Note that the training time
is taken only for new kind of “known” spam image, thus it
does not occur every time a known spam image is inserted.
On average, a new image will take less than 50ms to be pro-
cessed through all filters. The traditional computer vision
based technique proposed by Wu [24] for image spam clas-
sification takes around 200-700ms to extract feature from
an image, and roughly 2-3 seconds to classify an email with
four images.

7.5 Image Spam Signature Size

Since the proposed image spam filters use feature vectors
for near-duplicate detection, it is possible to distribute new
feature vectors to end mail server systems over the Internet.
Each participating email server can send its newly detected
spam image “signatures” to the central server which aggre-



Evaluator AND OR VOTE
Category # spams fpos% det% fpos% det% fpos% det%
size,bar 23 0 33.3 0.00211 100.0 0 100.0
crop 15 0 100.0 0.00232 100.0 0 100.0
shift,dots,url 12 0 100.0 0.00104 100.0 0 100.0
size,dots 12 0 33.3 0.00352 100.0 0 100.0
dots 9 0 100.0 0.00077 100.0 0 100.0
size 9 0 83.3 0.00190 100.0 0 100.0
shift,linecolor,fontcolor 6 0 25.0 0.00074 100.0 0 100.0
shift,fonttype,dots 4 0 100.0 0.00096 100.0 0 100.0
shift,fuzzy 3 0 50.0 0.00196 100.0 0 100.0
bits 2 0 100.0 0.00070 100.0 0 100.0
fontsize,dots,line 2 0 100.0 0.00080 100.0 0 100.0
shift,url 26 0 62.5 0.00196 100.0 0.00001 100.0
shift,fonttype,dots,frame 8 0 28.6 0.00132 100.0 0.00001 100.0
shift,bar 2 0 0.0 0.00078 100.0 0.00001 100.0
size,fuzzy 36 0 96.7 0.00517 100.0 0.00002 100.0
shift,dots,fontsize 100 0 78.4 0.00353 100.0 0 97.7
shift,dots 185 0 75.0 0.00963 100.0 0.00001 97.4
shift 276 0 83.3 0.05610 100.0 0.00018 96.4
shift,linecolor 76 0 55.1 0.00579 97.1 0.00002 91.3
shift,dots,line 3 0 50.0 0.00088 100.0 0 50.0
shift,linecolor,rotate 7 0 75.0 0.00043 100.0 0 100.0
crop,dots,shape 5 0 75.0 0.00072 100.0 0 100.0
shift,linecolor,fontcolor,fonttype 240 0 26.9 0.06958 83.6 0.00046 63.7
shift,content,fontcolor 6 0 0.0 0.00026 100.0 0 40.0
crop,dots 4 0 0.0 0.00039 100.0 0 33.3
overall 1071 0 63.6 0.17336 96.1 0.00072 88.9

Table 2: Results using different evaluators to aggregate results from multiple image spam filters.

gate the spam image signatures and periodically broadcast
them back to email servers.
To see how practical our method is for supporting col-
laboration between peers, we have calculated the network
overhead for exchanging information about new spams. In
our approach, only the image feature and the associated
threshold value generated by the spam filter need to be ex-
changed over the network. The three spam filters require
(64+36+16+3)×4 = 476 bytes per known image spam.

8. Conclusion and Future Work

In this paper, we present an image spam detection sys-
tem. By examining the content of new images contained
in incoming emails and detecting images that are near-
duplicates of known spam images, our system can effec-
tively detect image spams while maintaining a low false
positive rate. Rather than using computationally expen-
sive algorithms to detect new types of image spams de-
signed to thwart conventional computer vision algorithms,
our system uses efficient algorithms to target randomiza-
tion methods used to generate large number of unique but
visually similar image spams from template images. Our
system is designed to be integrated with existing anti-spam
technologies to boost the detection rate of image spams.
Our prototype system has demonstrated high detection
rates in most spam categories while achieving a less than
0.001% false positive rate using the “VOTE” aggregation
method.
We are planning to work on new feature extraction units for
image spam filters that can improve the performance of the
categories in which our current system does not perform
well. Furthermore, since image spam is constantly evolv-

ing, we believe it is a constant battle to find new features
that can effectively defeat new image spam techniques.
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APPENDIX



(1) shift (2) crop

(3) crop,dots,shape (4) size,bar

(5) shift,fonttype,dots,frame (6) shift,linecolor,rotate

(7) shift,linecolor,fontcolor,fonttype (8) shift,content,fontcolor

(9) shift,url (10) size,fuzzy

(11) fontsize,dots,line (12) shift,dots,fontsize

(13) crop,dots (14) bits

Figure 4: Example spams belongs to different categories of spamming techniques.


