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Abstract

The effectiveness of anti-spam techniques is
an important question: after all, spam has a
real cost to legitimate users in terms of time
and resources. The problem is how we deter-
mine effectiveness, especially for anti-spam
techniques that are distributed, and require
global scale to function. A scientific approach
would suggest that we conduct controlled ex-
periments to evaluate global-scale anti-spam
techniques, but that requires controlling the
Internet. Or does it?

In this paper, we describe a system we have
constructed to test global anti-spam tech-
niques that is built on top of the Spamula-
tor, a system that simulates relevant parts
of the Internet on a single computer. We
demonstrate the ability of our testing sys-
tem to conduct large-scale experiments with
some proof-of-concept experiments on SMTP
tarpits and a variation on the Distributed
Checksum Clearinghouse.

1 Introduction

‘The requirement that we be willing to sub-
ject our explanations to experimental test is
the distinguishing feature of science.’

[8, page 7]

How do we scientifically determine how effective anti-
spam techniques are? An approach involving exper-
imental testing is called for, yet anti-spam testing in
general poses a number of problems. For example, how
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is a realistic nonspam (ham) corpus collected while ob-
serving privacy concerns? What is really meant by
“effective,” when some anti-spam users may want to
avoid false positives even at the cost of receiving more
spam?

We focus on a different testing problem in this work.
A number of anti-spam techniques are local, in the
sense that they can be tested in isolation. Other anti-
spam techniques are global, however, and only work on
a very large scale, in a distributed fashion. It would
seem that to test global-scale anti-spam techniques, we
need our own internet.

In fact, the problem is even worse than that. The
real Internet is a complex and constantly-changing en-
vironment. Setting up monitors on the Internet to
watch spam activity is rife with pragmatic issues, like
the technical, political, and legal headaches of deploy-
ing monitoring on a very large scale. Where to de-
ploy monitoring for accurate data collection is another
question – after all, a thermometer sitting on a heating
vent is oblivious to the freezing weather outside.

The controlled experiments we want imply that some-
how, we must control all these factors. Furthermore,
for good experiments we must control the actions of
spammers on the Internet and, to be blunt, if we could
do that, we would have already solved the spam prob-
lem!

In the remainder of this paper, we discuss our pre-
liminary work on a system that addresses these prob-
lems. This system, the “Spamulator,” was actually de-
veloped for teaching university students how to send
spam, of all things, but we have realized that it can
be successfully applied to global-scale anti-spam test-
ing. Such testing allows controlled experiments and
measurements, and also permits new global-scale anti-



spam measures to be tried and evaluated in an isolated
test environment prior to being deployed in produc-
tion.

Related anti-spam testing work is covered in Section 2;
Section 3 describes the Spamulator. Section 4 presents
the testing system that we built using the Spamulator,
and we demonstrate its effectiveness with two experi-
ments that are detailed in Section 5. Our conclusions
and suggestions for future work follow.

2 Related Work

Cormack and Lynam’s work in spam filter testing [4] is
some of the most comprehensive evaluation work done
to date. The experiments they performed on spam fil-
ters used their evaluation framework, which uses the
messages from a given corpus and sends them through
the filter being evaluated. The framework can also
provide feedback to filters that can learn from mis-
takes. However, the testing framework is restricted to
filters that operate independently of external systems.
Systems that use wall clock time or distributed filter-
ing are not testable in this framework. Our system is
designed to handle large-scale distributed filtering as
well as being able to support local filtering.

Sarafijanovic et al. [12] designed a framework which fa-
cilitates rapid deployment of multiple spam filters and
simulated users over a network. This allows multiple
instances of a spam filter to be deployed and tested si-
multaneously. However, they did not perform an eval-
uation of several filters simultaneously, so it is not clear
how realistic (or useful) their simulated environment
is. Compared to our system, theirs is also substantially
more demanding in terms of resources: they recom-
mend using either PlanetLab [11] or multiple virtual
machines. Our Spamulator, on the other hand, runs on
a single computer with no virtual machines required.
This brings large-scale anti-spam testing into reach for
anyone with a laptop.

The closest work to ours is Garcia et al. [7]. They
built a simulator to test filters, trying to simulate the
behavior of spammers, legitimate users, and legitimate
mailing lists. Their system is highly abstracted, and is
tightly coupled. In contrast, our system is realistic to
the point where real, unmodified bulk-mailing software
can run on it to send email.

3 The Spamulator

Details of our Spamulator system and its use in teach-
ing have been covered elsewhere [3], but we give a brief

overview here for completeness.1

The Spamulator was originally designed and built for
use in a course on spam and spyware offered at the Uni-
versity of Calgary [1]. Students do course assignments
in a secure lab, isolated from the Internet for safety.
We take a balanced, “hands-on” approach, with pairs
of offense and defense assignments; for example, an of-
fense assignment had students writing spam software,
a defense assignment anti-spam software. The spam
assignment was particularly problematic, though. The
reason for this was that there weren’t enough people to
spam – a small, finite number of SMTP servers in the
lab limited what students could do. As a result, the
students’ experience was not as realistic as it should
have been.

This is solved by the Spamulator’s simulation of rel-
evant parts of the Internet. Running on a single ma-
chine,2 it simulates up to a million domains’ worth
of web pages, SMTP servers, and open proxies. This
allowed students to harvest email addresses and send
spam within the confines of their own private internet.
The network code they wrote could be in any program-
ming language, and did not need to link with special
libraries or make any concessions to the Spamulator.
In fact, regular network programs like web browsers
could use the Spamulator unmodified, and we ran un-
modified, real bulk mailing programs to stress-test the
Spamulator.

A high-level architectural overview of the Spamula-
tor is shown in Figure 1. Simulated domain names
are mapped into IP addresses by a local DNS server
(not shown). TCP packets from a client on a machine
to simulated IP addresses are rewritten, sending them
back to the same machine. A simulated server handles
the TCP traffic, pretending to be at the simulated IP
address and port; one process is used per TCP con-
nection. Return packets from the simulated server are
also rewritten to complete the illusion, appearing as if
sent from the simulated IP address.

Of particular importance to global anti-spam testing is
the fact that the Spamulator has a well-defined mecha-
nism through which it can be extended [2]. For exam-
ple, a connection to the simulated IP address 10.0.0.42,
port 25 causes the Spamulator to look in a directory

1Note to referees (to be removed in final version): Ref-
erence [3] is to appear in a computer science education
conference, and its focus is on the Spamulator in teach-
ing. The description of the Spamulator’s extension mech-
anism and this work on anti-spam testing is all new. The
content in this section has been written from scratch; the
corresponding author (aycock@ucalgary.ca) can supply a
preprint of [3] if there are any questions as to overlap.

2Currently Linux and Mac OS versions exist; the anti-
spam testing system we describe later used the Linux ver-
sion.
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Figure 1: Spamulator architecture

for an executable named

10.0.0.42:25

and if found, invokes it with command-line arguments
that reflect the simulated IP address and port.3 This
executable, after a brief handshake with the Spamula-
tor, handles the connection as if it were the simulated
machine. In this example, it would pretend to be an
SMTP server at port 25. Appendix A contains the
source code for a simple Spamulator extension.

The standard Spamulator installation we used in our
spam lab had SMTP servers that, upon receiving a
piece of email, simply discarded it. (Recall that we
were using the Spamulator for a spam-sending assign-
ment, so there was no point doing anything with the
sent email.) However, we realized that the Spamu-
lator’s extension mechanism could be used to build
a system for anti-spam testing, and the fact that the
Spamulator was simulating the Internet meant that we
could experiment with anti-spam on a global scale.

4 Anti-spam Testing System

At a high level, the testing system aims to simulate
an environment of multiple SMTP servers not dissim-
ilar to that found in the real world. Each of these
servers can make use of a variety of spam filters, in-
cluding those that employ distributed techniques for
classifying mail (see Figure 2). Our testing system is
described in the remainder of this section.

3On Unix-based systems, this may seem redundant be-
cause the same information is available from argv[0].
However, we are only describing part of the extension pro-
tocol here; the arguments are needed for other cases.

Figure 2: Testing system overview

4.1 SMTP Server

The SMTP protocol [10] is a relatively simple, text-
based protocol that uses a limited set of commands and
reply codes for communication. We created a program
which emulates an SMTP server within the Spamula-
tor; this is distinct from the SMTP server described in
the last section, because this server does not discard
incoming email. A collection of soft links to this server
were added to the Spamulator’s extension directory,
each link mapping a single IP address and port num-
ber to an instance of our SMTP server. We could easily
emulate thousands of SMTP servers by simply creat-
ing additional soft links. Whenever a TCP connection
on port 25 was made to one of our IP addresses, a
single instance of the SMTP server was started. Once
the SMTP transaction is completed the SMTP server
process shuts down. For our experiments, only a sub-
set of the SMTP protocol needed to be implemented
(HELO, MAIL, RCPT, DATA, QUIT).

4.2 Mailer Process

For the purposes of our experiments we developed
a simple bulk-mailing program to interact with our
SMTP servers. This mailer program acts as both a
spammer and as a regular sender of legitimate email,
switching between the two roles by changing the email
content. When acting as a regular sender, the content
of the email is randomized to represent the variation
in the contents of legitimate email. When acting as
a spammer, however, the exact same content is sent
out with each email to represent typical bulk-mailing
practices. Our mailer process also allows sending email
through SOCKS proxies to obscure the originating lo-
cation of the sender, although we did not exploit this
in the tests we describe here.



4.3 Spam Filtering Architecture

There were three major requirements for our system.
The first requirement was that the system must be able
to simulate filtering on a global scale. This meant that
our implementation would need to allow the filters to
communicate with other simulated servers (e.g., to co-
ordinate filtering across multiple SMTP servers). The
second requirement was that the implementation of
each spam filter should not require the use of a specific
programming language. It seemed logical to make this
flexibility a requirement rather than restricting our-
selves to only a single programming language. Finally,
we needed a mechanism that would allow spam filters
to be called from different places during the SMTP
transaction. This requirement allows different types
of filters to be called from their respective point(s) of
interest.

Keeping these requirements in mind, we developed a
plug-in system that executes each spam filter as an
independent process. As independent processes, each
filter can be written in any language that can be com-
piled and executed on the host system. Filters are able
to act freely as local or global spam filters. The only
expectation from the SMTP server is a verdict regard-
ing the current email’s classification (spam or ham).

There are three places within our SMTP server where
an anti-spam filter can be called: after the MAIL
command, after the last RCPT command has been
completed, or after the DATA portion of the session
has been successfully received. To facilitate spam fil-
tering, three types of data are harvested from each
SMTP session: the sender’s email address (from the
MAIL FROM command), the email recipients’ ad-
dresses (from the RCPT TO commands), and the ac-
tual email contents (following the DATA command).
This data is stored in three separate text files in or-
der to make them easily accessible to the spam filter
plug-ins.

The plug-in system is controlled by a filter configu-
ration file, that is read by each SMTP server process
during startup. This file specifies which filters need
to be run at each filter injection point. The server
will then run the specified filters and pass them in-
formation regarding the current SMTP transaction as
command line arguments. These arguments are pre-
sented in the form of file paths to the temporary files
that were created by the SMTP server. The filter is
then free to use the information stored within these
files to determine whether the current email should be
considered spam.

An example of a filter configuration file is presented
in Figure 3. Each line within this file represents a fil-
ter that will be run for a specific SMTP server. Each

IP Address Injection Point Path to Filter Argument

10.125.0.1 RCPT /filters/filter1 10.125.0.1
10.125.0.1 FROM /filters/filter2
10.135.0.2 DATA /filters/filter3 300
10.135.0.2 RCPT /filters/filter1 10.135.0.2

Figure 3: Sample filter configuration file

line begins with the IP address of the SMTP server
this filter would like to be called from. The next argu-
ment specifies which injection point the filter should be
called from (RCPT, [MAIL] FROM, or DATA). The
complete path to the filter’s executable is then pro-
vided. Finally, one optional argument may also be
specified that will be passed into the filter. In order to
allow a single spam filter to be called from more than
one injection point, a given filter may be specified more
than once within the configuration file.

The procedure followed by our SMTP server is de-
picted in Figure 4. First, a spammer connects to the
SMTP server and begins the process of sending an
email (1). During this process the pertinent informa-
tion related to the email being sent is recorded to a
number of files acting as storage buffers (2). At each
of the filter injection points, filters that had been spec-
ified in the configuration file are executed with the
command line argument pointing to the appropriate
storage buffer (3). The spam filter then determines
whether the current message should be classified as
spam and returns its verdict to the SMTP server (4).
If the email is classified as spam the connection with
the sender is terminated, otherwise it is completed and
treated as a successful delivery of that message. For
later data analysis, we log errors, how many emails
were attempted to be sent, the reject/accept verdict
of each spam filter called, and the name of the spam
filters executed.

4.4 Spam Filters

In order to show that the spam filtering architecture
is capable of achieving our stated goals, we have im-
plemented two distributed spam filtering techniques.
Individual SMTP servers are converted into “tarpits,”
and a simplified Distributed Checksum Clearinghouse
(DCC) filter is deployed within the Spamulator. As
we discuss in the next section, these are meant only as
proofs of concept to show that our system can be used
for large-scale experiments.

4.4.1 Tarpits

An SMTP tarpit is a modified SMTP server that de-
lays the communication of an incoming request for an
extended period of time [6]. The assumption behind
tarpits is that spammers send high volumes of email



Figure 4: Spam filtering process

and that these tarpits can be used to slow them down
and thereby diminish their profits. A discussion of
whether or not this is a sound assumption is beyond
the scope of this paper, but we will take it at face value
for the purposes of our experiment.

Tarpits are specifically targeted at spammers since le-
gitimate mailers should only be making use of proper
SMTP servers. Should a legitimate mailer accidentally
attempt to send mail through a tarpit they would also
be delayed for a short period of time, but this should be
tolerable due to their relatively low volume of emails.
In principle, given enough tarpits (i.e., considering this
as a global-scale anti-spam technique) spammers could
be significantly delayed.

Our proof-of-concept tarpit implementation causes the
SMTP process to sleep temporarily after the receipt of
each SMTP command. During the SMTP connection
our tarpit will sleep for an aggregated time of 10 sec-
onds. These tarpits will also reduce the TCP/IP win-
dow for data transfer down to a single byte to further
delay spammers in sending out mass batches of email.

4.4.2 Distributed Checksum Clearinghouse

Another spam filtering technique requiring global scale
is the Distributed Checksum Clearinghouse (DCC) [5].
DCC aids in identifying bulk email (not necessarily
spam) by tracking how many times a given email mes-
sage has been received on a global scale. This method
attempts to exploit the fact that much of the spam be-
ing sent around the world is not being sent to only a
single recipient. Much of the spam is being sent in bulk
and DCC attempts to leverage this trait by maintain-
ing a distributed hash table that maps the checksum
of a given email message to the number of times that

checksum has been reported. Mail handlers (SMTP
servers, mail clients, etc.) wishing to make use of a
DCC first calculate a checksum for each incoming mes-
sage. Next, a DCC server is queried to find out how
many other people have also received that message. If
the count returned is above a predefined threshold the
mail can be discarded or filtered as spam.

Our simplified DCC filter works by analyzing the data
portion of each email it is asked to inspect. We im-
plemented two different checksum algorithms, the first
of which simply looks at the overall size of the mes-
sage, and the second calculates the ELF-hash [13] of
the message. From here the DCC client establishes
a TCP connection with a running DCC server – an-
other Spamulator extension – and sends the gener-
ated checksum as a request. An optional identifier
can be included which allows multiple checksum algo-
rithms to be tested without requiring a separate DCC
server for each checksum scheme. The return value
from the DCC server is the number of occurrences
of that checksum the server has seen. A decision of
how to classify the email is then based on this filter’s
second command-line argument which represents the
spam threshold value. This value is defined in the fil-
ter configuration file as the optional argument for this
filter, as described earlier.

5 Experiments

We conducted two experiments as proofs of concept to
demonstrate our global-scale anti-spam testing system
in operation. Note that these experiments are not in-
dicative of the only experiments our system is capable
of, nor are they intended to yield surprising results at
this stage. We are only using them to demonstrate
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Figure 5: Tarpit test results

our system’s ability to perform large-scale anti-spam
experiments.

5.1 Tarpits

For the purposes of testing tarpits within our envi-
ronment, we ran an experiment where a simulated
spammer attempted to connect to an SMTP server se-
lected at random from the list of our configured SMTP
servers. This simulates a spammer sending mail to har-
vested email addresses in an undirected way, i.e., a typ-
ical case. We studied the effects of converting increas-
ing percentages of SMTP servers into tarpits, with the
goal being to identify the increased cost (cost=time
in this scenario) to the spammer caused by the use of
tarpits. While Hunter et al. have already conducted
tarpit experiments [9], the purpose of our testing was
to demonstrate our system’s ability to produce results
for a very large-scale experiment that would be be-
yond the capability of most organizations to perform
physically.

Our tests were conducted using 10240 SMTP servers
within the Spamulator. We ran three versions of tests
with 0%, 5%, and 10% of the SMTP servers converted
into tarpits, respectively. Our mailing process then
simulated a spammer by sending 100, 500, 2500, 5000,
and 10000 emails over the network and recording the
time it took to complete each batch of emails. These
tests were repeated a number of times in order to allow
the resulting data to normalize.

Table 1: DCC test results

Algorithm Collisions
ELF-hash 2 (0.02%)

Message size 90 (0.9%)

As seen in Figure 5, the amount of time it takes to send
a given number of emails increase along a linear scale
as the percentage of tarpits increases. It is interesting
to note that with only 5% of our SMTP servers acting
as tarpits we increased the cost of sending emails (in
terms of time) by over 1300%. With 10% tarpits, the
cost increased by over 2800%. However, even if the
assumption underlying tarpits regarding spam-sending
behavior were to hold, and it doesn’t, having 10% of
global SMTP servers being tarpits would be practically
impossible. It is safe to conclude that tarpits are not
an effective global solution.

5.2 Distributed Checksum Clearinghouse

Real DCC systems use “fuzzy” checksums so that,
at least in theory, minor alterations to a spammer’s
message still yield the same checksum value. We con-
ducted tests using two simple, non-fuzzy checksum al-
gorithms: total message size and the ELF-hash of the
first line of the email message. Note that the purpose
of our testing was not to evaluate the effectiveness of
these particular checksum algorithms, but rather to
demonstrate the ability to test these algorithms easily
within a controlled environment.

In order to test these algorithms we configured 10240
SMTP servers within the Spamulator to use the DCC
filter. We then modified our mailer process to send
out 10000 “legitimate” emails. Although our mailer
uses a randomly generated string of text for its mes-
sages, we could have just as easily sent actual emails
read from a corpus of archived ham messages. Next,
our DCC system was seeded with the checksum of a
predefined spam message. Finally, we looked at the
number of collisions encountered when sending our “le-
gitimate” emails using each of our simplistic checksum
algorithms.

The results (as shown in Table 1) indicate that these
algorithms are not sufficient for use as DCC check-
sums, as we expected. Our test set of 10000 emails
is not representative of the variations in emails sent
throughout the world and yet we still have a substan-
tial number of collisions. However, our goal was to
demonstrate the ease with which such checksum al-
gorithms could be tested; to test these different algo-
rithms for DCC servers on a massive scale, only our
filter configuration file needed to be modified.



6 Conclusion and Future Work

Our system provides researchers with a low cost, low
risk way of testing anti-spam techniques. These tech-
niques can range from local spam filters to complex
global-scale distributed systems or any combination in
between. We have demonstrated the flexibility and
efficacy of our system by testing several sample con-
figurations of tarpits and DCC filtering techniques.

There are a number of avenues for future work. While
we have not addressed the problem of finding good
(training and) test corpora that is common to anti-
spam testing, an obvious improvement to our system
would be to supplement it with good ham/spam cor-
pora, or look at realistic synthetic traffic generation.
In addition, a number of additional anti-spam tech-
niques, both local and global, can be implemented
within our system.
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A Sample Spamulator Extension

The C code for a sample Spamulator extension is be-
low. It simply prints “Hello, world!” across the TCP
connection to the client and exits. For brevity, all error
checking code has been omitted.

The Spamulator holds a new TCP connection in limbo
until it can start up a simulated server to handle the
connection. Once started, the simulated server estab-
lishes a socket that it can listen for the new connection
at, and passes that port number back to the Spamula-
tor by writing it to the standard output. Then the Spa-
mulator can let the new connection proceed, rewriting
packets appropriately. The simulated server accepts
the new inbound connection and begins its normal op-
eration.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet.in.h>
#include <unistd.h>

int main()
{

// Set up socket to listen at
int sock = socket(PF_INET,



SOCK_STREAM,
IPPROTO_IP);

listen(sock, 1);

// Send port number to Spamulator
struct sockaddr_in sin;
socklen_t len = sizeof(sin);
getsockname(sock, &sin, &len);

unsigned short port = sin.sin_port;
write(STDOUT_FILENO, &port, sizeof(port));

// Finally, accept the connection
int conn = accept(sock, NULL, NULL);

// Now talking to client. . .
write(conn, "Hello, world!\n", 14);
return 0;

}


