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Abstract

In this paper we consider the approach to
image spam filtering based on using image
classifiers aimed at discriminating between
ham and spam images, previously proposed
by other authors. In previous works this ap-
proach was implemented using “generic” im-
age features. In this paper we show that its
effectiveness can be improved by using spe-
cific features related to the graphical char-
acteristics of embedded text. The features
we consider are derived from measures which
were proposed in our previous works with
the aim of detecting image obfuscation tech-
niques often used by spammers to make OCR
tools ineffective. An experimental investiga-
tion is carried out on a set of images taken
from two corpora of real ham and spam
emails.

1 Introduction

Image-based spam (shortly, image spam) is a trick in-
troduced by spammers few years ago, which consists in
embedding all the textual information (i.e., the spam
message) into an image, and attaching the obtained
text image to the spam e-mail, thus evading any tex-
tual analysis performed by the spam filter (usually, a
näıve Bayes classifier). OCR-based modules can be
used against image spam, to allow the analysis of the
semantic content embedded into images. Their poten-
tial effectiveness was investigated by the authors in [7].
However, this approach requires high processing time
and can only be effective for clean images. For this rea-
son, spammers often obfuscate the text embedded into
images. Thus, a spam filter equipped with an OCR-
based module as the unique countermeasure against
image spam is vulnerable to image spam with obfus-
cated text. This was proven by the authors [5] for the

popular open source SpamAssassin filter.1

Some authors proposed a different approach against
image spam. They faced the problem of recognizing
image spam as a two-class classification (discrimina-
tion) problem between ham and spam images [11, 1, 6],
which are defined as images that are respectively at-
tached to ham or spam e-mails. To this aim, different
sets of features were proposed, either visual [11, 1] or
mainly derived from image metadata [6]. It is worth
pointing out that this approach could be unaffected by
the use of text obfuscation techniques and has a lower
computational cost than OCR-based techniques.

In previous works we proposed a more specific ap-
proach, focused on the subclass of image spam char-
acterized by obfuscated text [8, 3, 4]. Our approach
was based on the idea of detecting the presence of ob-
fuscation techniques into an image contaning embed-
ded text, which could be considered as an evidence
of spamminess of the email to which the image is at-
tached. This approach is complementary to the one
based on OCR tools, in the sense that it could allow
to recognize a spam email when an OCR-based mod-
ule is made ineffective by text obfuscation. To evaluate
this approach, we developed some measures aimed at
detecting and quantifying the amount of image text
defects which are typical consequences of known ob-
fuscation techniques used by spammers, like broken
characters or background noise interfering with char-
acters. A preliminary experimental evaluation showed
that our measures were actually capable of detect-
ing typical obfuscation techniques used by spammers.
This suggested that a simple way to exploit them into
a modular spam filter (like SpamAssassin) to build
an image spam filtering module could be to assign a
higher “spamminess degree” to emails with attached
images characterized by higher values of our measures.
However, the problem of how to integrate effectively
such measures in a spam filter architecture including
modules based on OCR or on image classification tech-

1http://spamassassin.apache.org



niques was left open.

A further experimental investigation on a real data set
composed by ham and spam images revealed that our
measures, due to their “generality”, detect also im-
age defects present in ham images (due for instance to
text placed over a photograph, or to complex chara-
caters and backgrounds used in postcards or playbills,
which are typical examples of images attached to ham
emails), and that many ham images result more noisy
than spam ones. Therefore our measures can not be
directly used to recognize image spam with obfus-
cated text using the simple approach described above
(namely, the higher the amount of noise, the higher the
“spamminess” of the corresponding email). However
we also found that the amount of noise evaluated by
our measures has rather different ranges for ham and
spam images, due to the nature of ham images and of
the particular way in which spam images are typically
constructed. This suggested that our measures could
be effectively exploited as visual features into an image
spam filtering module made up of an image classifier,
like the ones proposed in [11, 1, 6].

In this work we show how the measures we proposed
in previous works can be exploited as explained above.
We point out that the main difference with respect to
our previous approach [3] is the following: instead of
using our measures to detect if the image text was ob-
fuscated in an adversarial way to make it unreadable
by an OCR tool, we use them to improve the discrim-
inability between ham and spam images in a space
made up of image features.

In the next section we give a brief description of the
visual features proposed in [1, 6]. The measures pro-
posed in our previous works and the approach exper-
imented in this paper are described in section 3. In
section 4 we report experimental results on real data
sets of ham and spam images.

2 Previous works

In [1, 6] the task of recognizing image spam was ad-
dressed as a two-class classification problem between
ham and spam images, in a given feature space. This
approach consists in training a classification algorithm
(like a decision tree or a support vector machine) on a
training set made up of labelled ham and spam images,
to find a decision function in the considered feature
space. Such decision function is then used at opera-
tion phase to label new images.

In [1] five visual features were proposed, related to
the characteristics of text regions inside an image.
The first feature was the relative area of the image
occupied by text. It was used with the underlying

idea that spam images contain more text than legit-
imate ones. The other features used were color het-
erogeneity and saturation computed separately over
text and non-text regions, based on the assumption
that images which are synthetic for their main part
are more likely to be spam. The two color satura-
tion features are defined as the fraction of pixels (in
the corresponding text or non-text region) for which
max(R,G,B)−min(R,G,B) is greater than a thresh-
old T (set to 50 in that work). These features rely on
the assumption that synthetic regions are more satu-
rated than natural ones. Color heterogeneity features
are computed by using minimum variance quantiza-
tion to convert the original image to an indexed one,
with a smaller number of colours. In particular, non-
text regions were quantized up to k = 10 colours, while
text regions were quantized up to k = 8 colours. The
two color heterogeneity features are then computed as
RMS errors between the two images, separately for
text and non-text regions. Analogously to the color
saturation features, also the color heterogeneity fea-
tures rely on the assumption that synthetic regions
contain less colours than natural ones. A support vec-
tor classifier was used in that work.

In [6] a different kind of features was used. Although
some visual features were used as well (like average
RGB colours, the relative area occupied by the most
common colour, and colour saturation features as in
[1]), the most important role was played by metadata
extracted from the images. More precisely, all image
metadata were used, including file format, file size (ex-
pressed in KB), image height and width, information
about the presence of comments in the image, number
of frames, bits per pixel, logical height and width, com-
ponents, bands, etc.2 It is worth noting that this can
generate thousands of different features, potentially in-
creasing the risk of overfitting as well as leading to a
relatively higher computational cost. For these rea-
sons, a feature selection algorithm was used in [6] to
select the most discriminant features. The classifica-
tion algorithm used in that work was a decision tree.

Using the features described above and the corre-
sponding classification algorithms, classification accu-
racies between 0.8 and 0.9 were attained in [1, 6] on
real and artificial data sets of ham and spam images.

We point out that the visual features used in [6] are not
inspired by specific characteristics of ham and spam
images. Analogously, alhtough the features used in [1]
are focused on a peculiarity of spam images, namely
the presence of embedded text, they consider “generic”

2As reported in [6], for a full listing of the
metadata fields in various image formats, see
http://java.sun.com/j2se/1.5.0/docs/api/javax/
imageio/metadata/package-summary.html.



characteristics of text areas (related to colour).

3 Recognizing image spam through
low-level characteristics of image
text

An approach for recognizing image spam different from
the ones described in section 2 was proposed by the au-
thors in previous works [8, 4, 3]. As described in the
introduction, our approach was based on the idea that
image spam with obfuscated text, which can not be
recognized by means of an OCR tool, could be recog-
nized by detecting the presence of adversarial obfus-
cation techniques. In other words, when the “signal”
(i.e., the spam text) can not be recognized, the pres-
ence of adversarial “noise” (i.e., the consequence of
the adversarial action carried out by the spammer to
conceal the spam text) could reveal the image “spam-
miness”. To this aim, the first step was to devise mea-
sures capable to detect the presence and to evaluate
the amount of obfuscation techniques into a given im-
age. To avoid overfitting, we did not focus on charac-
teristics of specific obfuscation techniques (like small
random dots around characters), but on identifying
kinds of image text defects common to different tech-
niques. The rationale is that measures which over-
fit specific techniques could be evaded more easily by
spammers (as happens, for instance, for spam filter-
ing techniques based on detecting specific spam words,
or on digital signatures). Analyzing obfuscation tech-
niques observed in real image spam emails (see the
examples in figure 1), we identified three main kinds
of image text defects:

• the presence of small (relative to character size)
fragments around characters (due for instance to
characters broken by random lines of the same
colour as the background, to characters filled with
different colours, or to small background compo-
nents, like random dots, around characters);

• the presence of large (relative to character size)
fragments around characters (due for instance to
characters interfering each other, or interfering
with noise components like random segments of
the same colour as the text);

• large background shapes overlapping with charac-
ters (due to placing text over non-uniform back-
ground).

We then developed a measure for each of the three
kinds of image text defects described above.

Since we were focusing on image defects whose con-
sequence is to make OCR tools ineffective, and OCR

Figure 1: Examples of real spam images with text
obfuscation techniques against OCR. The images are
taken from the authors’ personal corpus described in
section 4.

algorithms usually work on binarized images, we chose
to compute our measures after binarizing the original
image. Two of our measures are based on the peri-
metric complexity measure (sometimes referred to as
the inverse of compactness), which is used in the psy-
chophysics of reading literature [9] to evaluate diffi-
culty for a human in reading a text, and was also used
in [2] to assess the legibility of CAPTCHAs. Perimet-
ric complexity is defined for black and white images,
as the squared length of the boundary between black
and white pixels (the “perimeter”) in the whole image,
P , divided by the “ink-area” A (namely, the number
of pixels belonging to the foreground components),3

P 2/A. A notable property is that it is scale invari-
ant. For our task, computing P 2/A over the whole
image was not useful, because it depends on the num-
ber of components in the binary image (i.e., the “ink-
area”) for each given component, which can be very
different in different images. However, we found that
by measuring P 2/A for each individual component of
a binary image, it is possible to tell clean characters
from noisy ones, or from noise components. In partic-
ular, we found that clean characters exhibit values of
P 2/A in a certain range (about (16, 150]), while bro-
ken characters or small noise components exhibit lower
values of P 2/A (namely, they are less complex than
full characters). Analogously, shapes corresponding to

3We computed P as the number of background pixels
4-connected to at least one foreground pixel, and A as the
number of foreground pixels.



connected characters or to complex noise components
are usually characterized by higher values of P 2/A.

Given a binary image, our measures were defined as
follows (see [3]). First, all the connected components
in the binarized image are identified, and are labelled
as character- or noise-like, depending on their P 2/A
value as described above. Then the first two measures,
named f1 and f2, were defined as the fraction of noise-
like components, and as the relative area occupied by
them with respect to the overall area of all compo-
nents. They are aimed respectively at detecting the
presence of small and of large noise components. To
further focus on noise components close to characters
(which are more detrimental to OCR performance), we
subdivided the image into p× q equally sized cells (we
chose p = q = 10), and computed f1 and f2 as the av-
erage of the values defined above over all cells. In the
case of f1, we disregarded cells in which no character-
like components were present (if no character-like com-
ponents were present in the image, f1 was set to 1).
The third measure, denoted as f3, was aimed at de-
tecting large background components overlapping with
characters and hiding them, and was defined as the
relative number of edge pixels (obtained by applying
a Canny edge detector to the original image) which lie
inside character-like components of the binary image.
All these measures are in the range [0, 1], where higher
values indicate more noisy text.

As pointed out in the introduction, the problem of how
to integrate effectively such measures in a spam filter
architecture including modules based on OCR or on
image classification techniques was left open. A pos-
sible simple solution was suggested, namely to assign
a higher “spamminess degree” to emails with attached
images characterized by higher values of our measures,
based on the rationale that email with attached images
containing text which is obfuscated in an adversarial
way are likely to be spam. However subsequent exper-
iments carried out on real ham and spam emails with
attached images revealed that our measures also de-
tect the kind of artifacts present in many ham images
containing text, and that often the amount of noise
in ham images (evaluated by our measures) is higher
than in spam ones. The noise in ham images can be
due for instance to text placed over photographs, or
to complex character shapes and backgrounds which
can be found in postcards or playbills, which are typ-
ical kinds of images attached to ham emails (see the
example in figure 2).

Therefore the simple approach mentioned above for
detecting image spam with obfuscated text would not
be effective, since many ham images could be deemed
noisy as well, possibly leading to many false positives.
Nevertheless, we also found that the amount of noise

Figure 2: Example of a real ham image with embedded
text which could be difficult to read by an OCR tool.
This image is taken from corpus used in [6], described
in section 4.

evaluated by our measures has rather different ranges
for spam images (both clean and obfuscated), and
spam images. This difference does not consists sim-
ply in lower values of our measures for ham images
and higher values for spam images, as hypothesized in
our previous works, but in a more complex pattern of
values. This is due to the nature of ham images (in
many cases the embedded text and the background
are rather complex for OCR tools, as in the examples
reported above), and to the particular way in which
spam images are typically constructed (they are usu-
ally synthetc images with clean, regular text, possibly
obfuscated at a later time with artificial techniques).
This suggested that our measures (at least in the way
they were defined) could be more effectively exploited
as features of an image classification algorithm as in
the approach used in [1, 6], letting the learning al-
gorithm automatically find the regions of the feature
space corresponding to ham and spam images, on the
basis of a training set made up of labelled images. In
particular, our measures could be used together with
other visual features (like the ones proposed in [1, 6]),
to increase their discriminant capability. Indeed, we
point out that visual features proposed in other works
focus on “generic” characteristics of the whole image
([6]) or of its text areas ([1]), related to colours (see
section 2), our features focus instead on more specific
characteristics of text areas, related to the shape of the



embedded text characters and to the non-uniformity
of background.

To test this potential use of our features, we slightly
modified the way in which f1 and f2 are computed. We
localize first text areas, then binarize separately each
text area, and set the colour of the remaining parts of
the image as the background colour. This allows to
focus only on text areas without the “trick” of subdi-
viding the images into cells. In this way, f1 and f2 are
simply computed as the fraction of noise-like compo-
nents in the whole text areas, and as the relative area
occupied by them. Text localization is carried out us-
ing an algorithm recently proposed by R. Achanta.4

To improve the reliability of such features we also con-
sider the relative area occupied by text, namely the
number of pixels belonging to text areas divided by te
image size.

An experimental evaluation of the discriminant capa-
bility of our features is given in the next section.

4 Experimental results

In this section we present experimental results aimed
at evaluating the usefulness of our features in discrim-
inating ham and spam images, when used in an image
classification algorithm. In particuar, we test the dis-
criminant capability of our features when used both
alone and together with other visual features.

4.1 Esperimental setup

The experiments were carried out on two corpora of
images taken from real emails. The first corpora is a
collection of personal emails used in [6], and is made
up of 2, 006 ham emails and 3, 297 spam emails.5 We
point out that, to our knowledge, this is the only pub-
licly available corpus of real ham images. The second
corpus was made up by the same ham images of the
first one, and of 8, 549 spam images collected by the
authors since January 2006. All the images used in
our experiments are publicly available.6

For each corpus of images, we evaluated the classifi-
cation performance attained by the two sets of image
features proposed in [1, 6], and by our four features
described in section 3, using the same base classifier.
We then evaluated two kinds of combination of our
features with the other ones. The first combination is
at the feature level, and consists simply in concatenat-

4http://lcavwww.epfl.ch/~achanta/TextDetection/
TextDetectionResults.html

5Note that the label ‘ham’ and ‘spam’ refers to the email
to which the image was attached.

6http://prag.diee.unica.it/n3ws1t0/eng/
spamRepository

ing the two feature vectors and in training a classifier
on the new feature vectors. The second one is at the
score level, and consists in training two different clas-
sifiers on each set of features, and then in combining
the scores provided by the two classifiers using another
classifier.

Classification performance was measured with the re-
ceiver operating characteristic (ROC) curve, to avoid
arbitrary selection of the working point of the cassifier.

We used two base classifiers: support vector machines
(SVMs) with radial basis function (RBF) kernel for
experiments with the features proposed in [1], and de-
cision trees (C4.5 implementation [10]) for experiments
with the features proposed in [6]. Note that for both
set of features the base classifier is the same used in
the corresponding work. When SVMs were used, fea-
ture values were normalized to obtain zero mean and
unit variance.

The ROC curves were computed using a 5-fold cross
validation. Classifier parameters (the regularization
parameter C and the kernel parameter σ for SVMs,
and the pruning factor for decision trees) were chosen
by an inner 5-fold cross validation on the training set
of each fold. For SVMs, all the possible combinations
of γ = 0.01, 0.1, 0.5, 1.0, 10 and C = 0.1, 1.0, 10.0 were
evaluated. For decision trees, we considered confidence
factor (i.e., the so-called pruning level) values rang-
ing from 0.05 to 0.65 with steps of 0.10 (the standard
C4.5 tree generation procedure was used, without the
“windowing” technique [10]). The objective function
used for parameter selction was defined as the sum of
the false positive (FP) rates corresponding to differ-
ent false negative (FN) rates (from 5% to 30% with
steps of 2.5%). The rationale was to prefer classifiers
exhibiting low FP rates for reasonably small values of
the FN rate, as in spam filtering FP errors are more
harmful than FN ones. When different sets of fea-
tures were combined at the score level, a SVM with
RBF kernel was used to combine scores provided by
the two base classifiers. Parameter selection for this
SVM was carried out on the training set of each cross-
validation fold, using a further 5-fold cross validation
and the same parameter values reported above. All
the above procedure was repeated five times, and the
average ROC curves was finally computerd, together
with its standard deviation.

4.2 Results

Results are reported in figures 3 (for the corpus used in
[6]) and 4 (for the corpus made up of the ham images
in [6] and our spam images). In each figure, the upper
and lower plot refer to experiments with the features
proposed respectively in [1] and [6]. Four ROC curves



are reported in each plot:7 the one obtained by the set
of features proposed either [1] or [6], the one obtained
by our set of four features, and the ones obtained by
combining at feature and score level the two sets of
features above. Note that only the most significant
part of the ROC for the considered task is reported in
these figures, namely the one corresponding to small
values of the FN and especially of the FP rate.

These results show that the features proposed in [6]
have a relatively good discriminant capability: they
allow to attain FP rates below 0.06 for FN rates not
higher than 0.05. Features proposed in [1] exhibit dif-
ferent performances over the two data sets, in partic-
ular FP rates do not exceed 0.04 for FN rates higher
than 0.05 over the first data set, while FP rates do
not exceed 0.1 for FN rates higher than 0.15 over the
second data set.

Our features are less effective when used alone, except
when compared to the features in [1] on the data set
containing our spam images: in this case they allow to
attain a lower FP rate for a FN rate higher than 0.15.
In any case, the discriminant capability of the features
of [1] and [6] is improved when they are combined,
either at the feature or at the score level, with our fea-
tures. It can be seen that the higher improvement is
attained with respect to the features of [1]. The im-
provement over the features in [6] is instead smaller,
especially with feature level combination. This is prob-
ably due to the fact that the features of [6] are not
homogeneous: as explained in section 2, they consists
in six visual features (numerical values) and in im-
age meta-data (categorical values). Moreover, their
number is much higher than that of our features (in
the considered data sets there were thousands of meta
data). Indeed, the higher improvement was attained
with the score level combination of features.

To further check if our features can increase the dis-
criminant capability of other numerical features like
the ones in [1], we devised another set of four “generic”
visual features which could be used for image spam
recognition, mainly inspired by the rationale discussed
in [1, 6]:

• logarithm of the number of different colours in the
image;

• logarithm of the number of pixels of the image;

• relative area occupied by the most common colour
(used also in [6]);

• relative area occupied by text (used in [1]).

7Formally, the ROC curve is defined as the true positive
rate versus the false positive rate. We report results in
terms of the FP rate versus the FN rate for better legibility.

The results are reported in figure 5. A comparison
with figures 3 and 4 shows that the above “generic”
features have a better discriminant capability than the
four features proposed in section 3, and also with re-
spect to the ones in [1] and in [6]. In any case, their dis-
criminant capability is improved when combined with
the features proposed in section 3, as for the features
in [1]. We point out that an improvement can be ob-
served also on the data set used in [6], despite the per-
formance attained by the “generic” features was very
good: the FP rate, which was below 0.01 for values of
the FN rate higher than 0.05, is reduced to almost 0
when the features are combined at the feature level.

The above result indicate that using visual features tai-
lored to specific characteristics of image spam (in this
case, the “shape” of characters of the text embedded
into an image) can allow to improve the discriminant
capability of “generic” visual features. In particular,
a simple feature level combination (i.e., concatenat-
ing the feature vectors) could be effective when all the
features are homogeneous (as for the ones proposed
in [1]). On the other hand, combining them at the
score level could be the best choice when they are not
homogeneous or if their number is very different, as
in the case of image meta-data used in [6]. Higher
improvements could be attained by devising features
even more tailored to specific characteristics of image
spam than the ones considered in this paper, which
were originally devised for a slightly different goal as
explained in section 3.

Finally, we believe that the approach proposed in our
previous works against image spam (namely, recog-
nizing it by detecting the presence of embedded text
obfuscated in adversarial way, if any) still deserves at-
tention, even because its relevance could go beyond
the spam filtering task. This approach could be made
effective by a more proper choice of features capable
to detect not all kinds of text obfuscation, but just the
adversarial obfuscation.
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Figure 3: ROC curves (with standard deviation shown
as dotted lines) obtained on the image corpus used
in [6], with the features proposed either in [1] (top
plot) and in [6], (bottom plot), denoted respectively
as ‘Aradhye’ and ‘Drezde’, our features (denoted as
‘text’), and their feature and score level combination.
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Figure 4: ROC curves (with standard deviation shown
as dotted lines) obtained on the ham images used in [6]
and on our spam images, with the features proposed
either in [1] (top plot) and in [6] (bottom plot), our
features, and their feature and score level combination.
See caption of figure 3 for the notation.
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Figure 5: ROC curves (with standard deviation shown
as dotted lines) obtained on the data set used in [6]
(top) and on the data set made up of ham images used
in the same work and our spam images (bottom). The
features are the “generic” ones described in this sec-
tion, the ones described in section 3, and their feature
and score level combination. See caption of figure 3
for the notation.


