A Survey of Modern Spam Tools

Henry Stern
Cisco IronPort Systems
950 Elm Ave.

San Bruno, CA, 94066

Abstract

Over the past 5 years, spam sending technol-
ogy has improved dramatically. Static mes-
sages sent opportunistically through miscon-
figured hosts have evolved into dynamically
generated, subtly obfuscated messages sent
on a massive scale by special purpose mal-
ware. We present a survey of three gen-
erations of the most popular spam sending
tools, focusing on how they have improved
over time. The paper conclude with a case
study of a modern spam campaign, showing
how the spammer has used randomization to
make their messages more difficult to detect
by content filters.

1 Introduction

In the early 1990s, unwanted e-mail consisted mostly of
pranks, chain letters and inappropriate messages sent
to mailing lists. (Cranor & LaMacchia, 1998) By and
large, it was not malicious in intent and few, if any,
attempts were made to disguise the origin or contents
of the message. 1994 brought the infamous Canter and
Siegel “Green card laywers” incident (Campbell, 1994)
and commerical spamming was born.

Marketers eager to take advantage of a cheap new
method of communication would collect large num-
bers of e-mail addresses, in many cases without the
consent of their owners, and would send out mass
commercially-oriented mailings using their corporate
mail servers. In response, reputation services such
as the Mail Abuse Protection System Realtime Black-
hole List (MAPS RBL) would exact retribution by in-
structing their subscribers to drop all messages from
the marketer’s corporate mail servers, impacting their
businesses. (MAPS, 2004)

While blocklists served to educate well-intentioned

marketers, this lead to an escalation by the more
deviant marketers. Sendmail version 5 had no ac-
cess controls and always acted as an “open relay,” a
mail server that will deliver messages on behalf of any
client. (MAPS, 2005) Many other mail servers suffered
from similar problems. Rather than sending mail di-
rectly to the recipient’s mail server, spammers began
using these open relays as intermediaries. Even though
the owners of the open relays had done nothing ma-
licious, the RBL operators instructed their clients to
drop all messages from the open relays. This caused
considerable collateral damage to the legitimate users
of the servers acting open relays as their messages
would be blocked along with the relayed spam. This
shifted the repercussions of spamming from the sender
to third parties, as the owners of the open relays were
forced to secure their systems or to be effectively re-
moved from the network.

By 1998, pressure applied by MAPS and other anti-
spam organizations had, for the most part, mitigated
the open relay problem. Spammers were deliver-
ing messages directly to recipients’ mail servers using
their dynamic dial up internet protocol (IP) addresses.
Whenever the dial up IP address became listed on an
RBL, the spammer could simply reconnect and be as-
signed a new IP address from a large pool. Two pri-
mary methods of counteracting this attack emerged,
automated complaints (Haight, 1998) and the outright
blocking of every known dial-up IP address. (Fecyk,
1998)

Since most spammers were sending near-duplicate
messages to their lists, this early spam was vul-
nerable to collaborative filtering by duplicate detec-
tion. (Prakash, 1999) When enough users complained
about a message, its fingerprint would be added to a
list and other participants could then discard the mes-
sage. While duplicate detection was effective at the
time, it had a fatal flaw. If a spammer employed “list
splitting,” adding variable portions to a message, they
could create a message that would require an exponen-

tial number of signatures to detect. (Hall, 1999)

As evidenced in the SpamAssassin public corpus, (Ma-
son, 2002) spammers did not take any notice of Hall’s
countermeasure and continued to send nearly dupli-
cate messages until late 2002, when statistical text
classifiers for spam detection became popular. (Gra-
ham, 2002).

As broadband internet became popular, so did internet
connection sharing software. Users would often install
proxy software on their personal computers connected
to the internet to allow other computers on their home
network to share their internet connection. Like with
open proxy e-mail servers, this software was frequently
misconfigured to proxy connections for any host. As
with open relays before, spammers began using these
open proxies to disguise the origin of their e-mail. In
January 2003, the Sobig.a virus included a disguised
proxy server specifically with the intention of enabling
spam. (Stewart, 2003) This created a black market for
“peas,” lists of SOCKS (Leech et al., 1996) proxies.

The pressure of collaborative and statistical filters en-
couraged the development of new spam tools, uncere-
moniously referred to as “Ratware.” Dark Mailer and
Send Safe were both released in 2003. They were some
of the first spam tools to employ macro substitution
engines, allowed spammers to easily generate messages
with randomized text.

In this paper, we present three generations of the most
popular spam tools presently in use. We will show
how spam tools have evolved, focusing on advances in
message transmission infrastructure, obfuscation and
client mimicry techniques. We conclude with a case
study of a real spam campaign that makes use of ran-
domization techniques to attempt to evade detection
by spam filters.

2 Spam Tools

In order to provide a better understanding of how
spam tools function and why certain anti-spam tech-
niques may be more or less effective, we will exam-
ine three generations of well-known and heavily used
spam tools. All of these tools work on the same basic
principle, dynamic content by macro substitution, but
have been refined over time to create content designed
to evade anti-spam software and to send messages at
higher rates.

2.1 Dark Mailer

Dark Mailer quickly became one of the most popu-
lar “point-and-click” spam tools for the masses when
it was released in 2003. It was the preferred tool of

Feature DM SS RM

Windows user interface Yes Yes No
Web user interface No No Yes
Per-task configuration No Yes Yes
MX record cache No No Yes

Interoperate with third-party No No Yes
applications

Attachment support No Yes Yes
Image generation No No Yes
Image randomization No Yes Yes
Direct mailing Yes Yes No
Open relays Yes Yes No
SOCKS/HTTP Proxies Yes Yes No
Proxy locking No Yes No
Cluster-based mailing No Yes No

Distributed, malware-based No No Yes
mailing

Table 1: General feature matrix for Dark Mailer (DM),
Send Safe (SS), and Reactor Mailer (RM).

Robert Soloway, a spammer presently incarcerated for
fraud and tax evasion. (Shukovsky, 2008)

Dark Mailer is a simple software program developed
to run on ordinary personal computers running Mi-
crosoft Windows. Although easy to use, Dark Mailer
requires an experienced spam operator to avoid easy-
to-detect mistakes. Messages originating from novice
Dark Mailer users have always been an easy target
for anti-spam software. For that matter, novice Dark
Mailer users themselves have been easy targets for
other spammers. The Dark Mailer software was often
infected with malware by third parties before being
shared with other spammers.

The content of the message body is left entirely up
to the user, with no syntax checking or even a basic
preview function. Because of this, messages sent by
Dark Mailer often have obvious errors in them.

Message headers and structure are treated separately
from the message bodies. Dark Mailer requires the
user to specify a set of one or more “headers” that
contain the message headers (Resnick, 2001) and Mul-
tipurpose Internet Mail Extensions (MIME) struc-
ture (Freed & Borenstein, 1996) of an arbitrarily gen-
erated message. Dark Mailer randomly selects one of
these headers for each message that it generates.

Dark Mailer is capable of transmitting messages in a
large number of ways. Using Simple Mail Transfer
Protocol (SMTP) (Postel, 1982) , it can send messages
directly or via a relay. It can also send messages prox-
ied via Hypertext Transfer Protocol (HTTP) (Field-
ing et al., 1997), SOCKS4 (Koblas & Koblas, 1992)
or SOCKS5 (Leech et al., 1996). To increase mail-

ing speed, it can send messages to multiple recipients
(via SMTP RCPT commands) and can send multiple
messages per connection.

2.2 Send Safe

Send Safe is another of the most popular spamming
tools presently in use. (Anonymous, 2003) Unlike Dark
Mailer, Send Safe is openly sold by its owner, Rus-
lan Ibragimov and is still actively maintained. Send
Safe is available in two formats, a standalone applica-
tion for Microsoft Windows that manages spam cam-
paigns and an enterprise edition that consists of a
Microsoft Windows-based management console and a
mailer component that is available for Microsoft Win-
dows, Linux and FreeBSD. Both versions are similar
in functionality, except that the enterprise edition has
separated the e-mail delivery engine into a separate
component and allows for clusters of mailers to in-
crease delivery rate.

Send Safe has a significantly better configuration
management system than Dark Mailer. While Dark
Mailer’s configuration only supports one configuration
template with one email message, Send Safe’s config-
uration is organized by “campaigns” and “messages.”

A campaign consists of a set of one or more messages
and a set of mailing lists. A message consists of a
message body and sets of subjects, “FROM addresses”
and attachments. A campaign can be configured to
rotate through its messages on a periodic basis as e-
mails are transmitted.

Send Safe’s mailing lists are quite robust. Additional
information can be associated with individual e-mail
addresses and can be included in the message content
using macros.

Like Dark Mailer, Send Safe offers direct, relay and
proxy-based message transmission with some modern
enhancements. To evade block lists and avoid detec-
tion by an internet service provider, Send Safe can
change the IP address that it uses to connect to recip-
ient’s mail servers or its proxies.

Send Safe can also use “Inner proxies” to avoid de-
tection by honeypots. Rather than connecting to its
proxy list directly, Send Safe connects to its proxies
through a set of intermediary, trusted proxies. If there
is a honeypot in the user’s untrusted proxy list, the
IP address of the system running Send Safe will not
be compromised. The Send Safe documentation notes
that this feature can be quite slow.

Another, more devious enhancement is called “Proxy
locking.” Send Safe uses domain name system
(DNS) (Mockapetris, 1983) queries to look up the mail
exchanger (MX) record for the proxy’s internet service

provider. Rather than attempting to deliver messages
directly by the proxy, Send Safe uses the proxy’s in-
ternet service provider’s real mail server to relay its
messages to its recipient. This underscores the require-
ment for ISPs to use outbound spam filtering, lest their
production mail servers become listed in an RBL.

To reduce DNS-related latency, a Send Safe can main-
tain a database mapping domain names to IP of incom-
ing and outgoing mail servers. This is used for both
message delivery and proxy locking. This database is
not automatically populated.

Send Safe has an advanced message template system
that is transparent to the user. It can mimic mes-
sages generated by a wide variety of mail user agents
(MUA), e-mail clients such as Microsoft Outlook Ex-
press and Mozilla Thunderbird. As it sends e-mail,
Send Safe rotates through this set of templates so that
each sucessive message it sends appears to have been
sent using a different MUA. This is a significant im-
provement over Dark Mailer’s ad-hoc header system
given that most users have shown themselves to be not
savvy enough to create convincing message headers.

Send Safe offers several features that attempt to ob-
fuscate its content from spam filters.

Send Safe allows its users to prepend random Received
headers to their messages although it is not recom-
mended. In addition to being a flagrant violation of
the CAN-SPAM Act of 2003 (15 U.S.C. 7701, et seq.,
Public Law No. 108-187), these fake headers are quite
easy to detect.

If desired, Send Safe can encode the "text/html”
MIME alternative part of the message using
base64 (Josefsson, 2003) instead of the standard
quoted-printable. This would confuse lazy spam fil-
ters that do not decode the message if this feature
also encoded the ”text/plain” part. As this is an eas-
ily recognizable obfuscation, the use of this feature is
not recommended by Send Safe.

Other obfuscation functions include the ability to ap-
pend some random characters to the username in the
”From” header or to randomly add hypertext markup
language (HTML) tags to the message text in order to
confuse the parsers of some anti-spam filters. Partic-
ularly, the latter feature would defeat poorly-written
statistical anti-spam filters.

Lastly, Send Safe can “morph” attached images so that
they are not trivially recognizable by duplicate detec-
tion algorithms. This, no doubt, is related to the im-
age spam epidemic of 2006 where spam payloads were
presented as text inside raster images rather than in
the message bodies. (IronPort, 2006)

To help the user assess whether or not their message
is likely to be blocked by spam filters, Send Safe will
test a single message against SpamAssassin 3.0.0. Why
the Send Safe maintainer has not updated their copy
of SpamAssassin in over 3 years escapes the author.

2.3 Reactor Mailer

Reactor Mailer is, by far, the fastest spamming sys-
tem developed to date. Where Dark Mailer and Send
Safe generate the messages on the server and transmit
the messages through proxies, Reactor Mailer uses a
distributed computing model. Personal computers in-
fected with the Reactor Mailer client software peri-
odically download “atoms” that contain message tem-
plates and lists of e-mail addresses, independently gen-
erate and transmit their messages and then report the
results back to the Reactor Mailer server. (Stewart,
2007) This completely eliminates the bandwidth and
processing bottlenecks affecting Dark Mailer and Send
Safe.

Symantec has named the Reactor Mailer client soft-
ware Trojan.Srizbi. (Hayashi, 2007) It is a very
stealthy piece of malware, running inside the kernel
with a custom network driver to evade any software
firewalls running on the infected host. IronPort has
observed that the malware momentarily ceases activ-
ity when the user of the infected system performs any
sort of action, such as moving the mouse, so that the
user will not notice its presence.

200000

180000

160000

140000

Unique IP Addresses Per 24 Hours

120000

100000

80000 I I I I I I I
02 Feb2008 09 Feb 2008 16 Feb 2008 23 Feb 2008 01 Mar 2008 08 Mar 2008 15 Mar 2008 22 Mar 2008 29 Mar 2008

Figure 1: Estimated size of the Reactor Mailer botnet
between February and March 2008.

IronPort has been tracking this botnet using propri-
etary methods since October, 2007. On average, there
are 110,000 active bots during a 24-hour period, al-
though some of these may be duplicates due to dy-
namic IP addresses. Figure 1 illustrates the measured
size of this botnet throughout the period of February
through March 2008. IronPort has measured that this

botnet may be responsible for as much as 60% of all
spam traffic. That is, more than every other source of
spam combined. In February 2008, Marshal’s TRACE
team measured this same botnet as being responsible
for 39% of all spam traffic. (Marshal, 2008)

Reactor Mailer is sold under the Software as a Service
model by Elphisoft, a Ukranian company. It has a
slick web user interface whose backend is implemented
in Python using the Quixote framework. Where Send
Safe uses campaigns with multiple message body tem-
plates, Reactor Mailer uses “tasks” with only one mes-
sage body template each.

Reactor Mailer has a “template” system similar to
Dark Mailer’s header system, but far more robust.
The most popular template produces message bodies
nearly indistinguishable from Microsoft Outlook Ex-
press 6 which is included with Microsoft Windows XP.
The template engine is discussed in further detail in
section 3.1.3.

While Send Safe requires the user to create their
own images, Reactor Mailer has a robust “text to
image” system. It can create images based on
HTML-formatted text and can obfuscate those im-
ages through the addition of random noise and rota-
tion of the text. It is implemented using LibGD and
FreeType.

To enable interoperability with third-party systems,
such as GlavMed’s Canadian Pharmacy affiliate pro-
gram, Reactor Mailer can periodically fetch files from
an external HT'TP server.

To further speed up message transmission, Reactor
Mailer has an advanced DNS MX record caching sys-
tem so that the clients do not need to perform as many
time consuming DNS queries while they transmit their
messages.

Like Send Safe, messages can be tested against Spa-
mAssassin 3.1.7. Also like Send Safe, their version of
SpamAssassin is out of date.

3 Template-Driven Spam Generation

All three spam tools manage their message templates
in a similar manner. Message content is generated
separately from message headers (Resnick, 2001) and
the MIME structure. (Freed & Borenstein, 1996) Each
tool has its own custom macro language, although they
are all fundamentally similar to one another.

3.1 Headers

All three spam tools treat header and structural con-
tent separately from the body content, and with good

reason. Signature-based spam filters, such as Apache
SpamAssassin, have signatures that are designed to
detect spam solely based on their headers. The sep-
aration of the two allows a spammer to maintain a
minimal number of message headers that can avoid de-
tection by a spam filter no matter how many message
templates that they wish to use.

State of the art spam tools, like Send Safe and Reactor
Mailer, have developed header templates that perfectly
impersonate popular mail user agents (MUA), such as
Microsoft Outlook Express, eliminating the ability of
the spam filter to accurately detect spam solely based
on the message structure. This allows a spammer to
focus their efforts on ensuring that their message con-
tent remains undetected by spam filters.

Table 2 contains a feature comparison matrix for the
header template engines of the three spam tools.

Feature DM SS RM
Attachments No Yes Yes
Multiple templates Yes No Yes
Built-in MUA templates No Yes Yes
Piecewise templates No No Yes

Table 2: Header template feature matrix for Dark
Mailer (DM), Send Safe (SS) and Reactor Mailer
(RM).

3.1.1 Dark Mailer

Dark Mailer’s header template system is almost ex-
actly the same as its message body system. It only
differs in that the header template system has a spe-
cial macro, %MESSAGE_BODY, that is replaced with the
message body. In addition, Dark Mailer allows for
multiple message headers to be used, with one being
selected at random for each message that is transmit-
ted.

One important weakness of Dark Mailer is that it is
incapable of sending multipart messages with content
derived from message templates in both text/plain
and text/html. The header and message template can
be combined into one, but that defeats the purpose
of separating the structure from the content of the
message. Multipart spam messages that contain vastly
different content in their text/plain parts from their
text/html parts are quite often sent by Dark Mailer
users. One favourite trick is to replace the plain text
part with completely random text. This serves a dual
purpose of confusing some statistical text classifiers.

Messages sent by Dark Mailer users are notoriously
easy for spam filter vendors to detect. Many of the
header templates in use are uniquely identifiable and
do not resemble messages from the clients that they

purport to be in their X-Mailer headers. This is an
indicator that it is difficult for the average user to cre-
ate convincing message headers. In 2005, one could of-
ten see spammers trading Dark Mailer headers on the
now defunct Special Ham forum. (McWilliams, 2005)
While a historical record is scarce, one may have rea-
sonably inferred that many Special Ham participants
did not understand why their message headers were
ineffective.

Received: from %RND_IP by %PROXY; %RND_DATE_TIME
Message-ID: <%RND_UC_CHAR[20-25]@%RND_FROM_DOMAIN>
From: "/,FROM_NAME" <%FROM_EMAIL>

Reply-To: "%FROM_NAME" <JFROM_EMAIL>
%T0_CC_DEFAULT_HANDLER

Subject: %SUBJECT

Date: %RND_DATE_TIME

X-Mailer: %X_MAILER

MIME-Version: 1.0

Content-Type: multipart/alternative;
boundary="--%BOUNDARY"

X-Priority: %PRIORITY_NUMBER

X-MSMail-Priority: %PRIORITY_STRING

----%BOUNDARY
Content-Type: %CONTENT_TYPE;
Content-Transfer-Encoding: %CONTENT_ENCODING

%MESSAGE_BODY

----%BOUNDARY--

Figure 2: Dark Mailer’s default message header tem-
plate.

Figure 2 contains the default message header included
with Dark Mailer 1.13. The default X-Mailer macro
contains many different versions of Microsoft Out-
look Express. Messages generated by this template
look nothing like those generated by the real Outlook
Express. Thus, detecting messages sent using Dark
Mailer’s default settings is trivial.

3.1.2 Send Safe

While Send Safe allows its users to define their own
message header templates, it is completely unneces-
sary and is only recommended for “advanced” users.
Send Safe creates messages that resemble those cre-
ated by a wide variety of mail user agents. Send Safe’s
template system supports attachments, such as image
or audio files. While mimicking certain user agents,
such as Microsoft Outlook Express, Send Safe creates
parallel plain text and HTML parts.

Figure 3 shows the structure of a simple message gen-
erated by Send Safe using one of its Microsoft Out-
look Express templates. The ordering and format of
the message headers, MIME boundaries and HTML
preamble convincingly resemble those created by Mi-
crosoft Outlook Express 5.01.

Message-ID: <£8d301c89b00$0610aac0$laldbfd8@connect>
From: <connect@example.net>

To: "AOL Users" <victim@example.com>

Subject: Do you remember me?

Date: Tue, 01 Apr 2008 11:42:58 -0200

MIME-Version: 1.0

Content-Type: multipart/alternative;
boundary="----=_NextPart_OBF_816D_BCAEC508.EE6CF193"
X-Priority: 3

X-MSMail-Priority: Normal

X-Mailer: Microsoft Outlook Express 5.00.2919.6700
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2919.6700

This is a multi-part message in MIME format.

—————— =_NextPart_OBF_816D_BCAEC508.EE6CF193
Content-Type: text/plain;
charset="us-ascii"
Content-Transfer-Encoding: quoted-printable

Hi!
You don’t have to reply, this is a test.
You are welcome!

—————— =_NextPart_OBF_816D_BCAEC508.EE6CF193
Content-Type: text/html;
charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>

<META http-equiv=3DContent-Type content=3D"text/html; charset=3Diso-8859-=
1>

<META content=3D"MSHTML 5.00.2919.6700" name=3DGENERATOR>

<STYLE></STYLE>

</HEAD>

<BODY bgColor=3D#ffffff>

<DIV>

<P>Hi!</P>

<P>You don’t have to reply, this is a test.</P>

<P>You are welcome!</P>
</DIV></BODY></HTML>

—————— =_NextPart_OBF_816D_BCAEC508 . EE6CF193-—

Figure 3: A message generated by Send Safe.

3.1.3 Reactor Mailer

Reactor Mailer combines Dark Mailer’s multiple ran-
domly selected header system with Send Safe’s arbi-
trary MIME structure. Each task uses one or more
“templates,” instructions for how to compose a mes-
sage. Templates are divided up into sections, with the
contents of each section being rendered and inserted
into the appropriate place in a message.

A template contains sections to describe the MIME
boundary string, message headers, Content-Type
header, HTML message wrapper, Content-ID header
and body part headers for plain text, HTML and at-
tachments.

The default configuration of Reactor Mailer includes
templates to mimic Microsoft Outlook Express 6 and
The Bat! 3.99. Compared to Send Safe, its repertoire
is quite limited. Figure 4 shows Reactor Mailer’s Out-
look Express template. Some of the macros referenced
in this template, such as boundary_outlook, are hard-
coded into the client software.

.content_type_html
Content-Type: {content_type};
charset="{charset}"
Content-Transfer-Encoding: {transfer_encoding}
.content_type_cid_section_header
Content-Type: multipart/related;
type="multipart/alternative";
boundary="{boundary}"
.content_type_attach
Content-Type: {content_type};
name="{file_name}"
Content-Transfer-Encoding: {transfer_encoding}
Content-Disposition: attachment;
filename="{file_name}"
.headers
Message-ID: <{message_id_outlookl}>
From: {message_from}
To: {message_to}
Subject: {message_subj}
Date: {message_date}
MIME-Version: 1.0
{content_type}
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 6.00.2900.3138
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.3198
.html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset={charset}">
<META content="MSHTML 6.00.2900.3199" name=GENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY bgColor=#ffffff>
{message_html}</BODY></HTML>
.content_type
Content-Type: {content_type};
boundary="{boundary}"
.boundary
{boundary_outlook}
.content_id
{content_id_outlook}
.content_type_plaintext
Content-Type: {content_type};
charset="{charset}"
Content-Transfer-Encoding: {transfer_encoding}
.content_type_attach_section_header
Content-Type: multipart/mixed;
boundary="{boundary}"
.content_type_cid
Content-Type: {content_type};
name="{file_namel}"
Content-Transfer-Encoding: {transfer_encoding}
Content-ID: <{content_id}>

Figure 4: Reactor Mailer’s Outlook Express template.

3.2 Macros

All three spam tools have macro substitution engines
that are used to introduce dynamic content into mes-
sage bodies and headers. While they all have simi-
lar features, the newer tools have more robust built-in
functions, obfuscation and better randomization sup-
port.

Table 3 contains a feature comparison matrix for the
macro substitution engines of the three spam tools.

3.2.1 Dark Mailer

Compared to the more modern tools, Dark Mailer’s
macro system is very primitive. Macros are formatted
as %SMACRO, with an optional repetition suffix formatted
as [low-high]. For example, %RND_DIGIT [3-5] would
insert between 3 and 5 random decimal digits. Table
4 contains all of Dark Mailer 1.13’s default macros.

Feature DM SS RM

Custom macros Yes Yes No
Static macros Yes Some No
Variables No No Yes
Repetition Yes No No
Random text generation Yes Yes Yes
Cyrillic text generation No No Yes
Random word shuffling No No Yes
Random lines from files No Yes Yes
Random content from files No No Yes
URL obfuscation No Yes No
Random character insertion No Yes No
Random character swapping No No Yes
Hostname of proxy No Yes Yes
Granular date and time macros No Yes Yes
Default values for nulls No Yes No
Attachments No Yes Yes

Table 3: Macro subsitution engine feature matrix for
Dark Mailer (DM), Send Safe (SS) and Reactor Mailer
(RM).

Users can create custom macros to extend the default
set.

Macro Name Type Value
%RND_DIGIT Random 0-9

%RND_FROM_DOMAIN Static example.com
%RND_UC_CHAR Random A-Z
%RND_LC_CHAR Random a-z
%FROM_NAME Static %FIRST_NAME %LAST...
%FROM_EMAIL Static %RND_LC_CHARS[5-14]@
%RND_FROM_DOMAIN
%SUBJECT Static Message Subject
%RND_CHAR Random a-z, A-Z, 0-9
%RND_IP Random %RND_NUMBER([0-255]. ..
%BOUNDARY Static %RND_DIGIT[15-20]
%RND_TEXT Random %RND_ITEM_TEXT[10-40]
%RND_ITEM_TEXT Random %RND_WORD
%X_-MAILER Static Microsoft Outlook ...
%FIRST-NAME Static James, John, Robert, ...
%LAST_NAME Static Smith, Johnson, ...
%RND_WORD Random a, aaa, aaas, aarhus, ...

Table 4: Dark Mailer’s default macros.

Macros are either “Random* or “Static.” A random
macro emits a different value from its range every time
it is referenced. where a static macro emits the same
value from its range within a single message. For
example, define two macros, %MACRO1 and %MACRO2,
both of whom return a digit. The former is random,
the latter is static. Define a template, “%MACRO1[5]
%MACRO2[5].” Two executions could produce “97731
00000 and “53689 22222.”

Macros can be nested within one another. The de-
fault value of the macro that generates the From header
combines a random first name with a random surname.

Most notably, Dark Mailer does not support loading
data from files. The strings inserted by macros are
edited using the user interface and require the user to

copy and paste large amounts of data. While the un-
derlying storage system for macros is file-based, Dark
Mailer does not reload the data and must be restarted
if the file contents have changed.

3.2.2 Send Safe

Send Safe’s macro system focuses heavily on obfusca-
tion and randomization techniques. It is somewhat
limited in that only two macros are “static,” in the
context of Dark Mailer’s random and static macros,
and that it does not have any way of storing random-
ized values for later re-use. This makes certain tasks
impossible, such as repeating the message’s subject in-
side the message body. There is also no repetition op-
erator, although the macros that one would typically
want to repeat have template parameters that allow
for repetition.

Macros are formatted as {%MACRO: ARGUMENTSY}. For-
mats of arguments are somewhat arbitrary and depend
on the individual macro. Most are colon-delimited.
Custom macros are supported but are little more than
composites of built-in macros. Table 5 lists all of Send
Safe’s built-in macros, with descriptions copied from
Send Safe’s documentation.

Several of Send Safe’s macros are designed to obfuscate
text and uniform resource locators (URL) (Berners-
Lee et al., 2005) to confuse weaker spam filters.
To confuse some duplicate detection algorithms, the
RANDINSERT macro randomly inserts characters into a
string. Modern digest algorithms such as Open Di-
gest are resistant to this attack (Damiani et al., 2004),
although it can certainly irritate authors of regular
expression-based rules for SpamAssassin. The URL and
HEXURL macros replace characters in an URL with their
escaped equivalents. This fails to confuse spam filters
that un-escape URLSs, such as SpamAssassin.

Send Safe has a breadth of randomization macros that
are able to use text files as inputs, so as to avoid clut-
tering the user interface. Like Dark Mailer, Send Safe
does not automatically reload the data files as they
are changed. However, it can reload them on a peri-
odic basis or whenever the program begins mailing a
campaign.

Unique to Send Safe is a macro targeted at Amer-
ica Online’s spam filtering infrastructure. The ROTURL
macro looks for a particular error code that AOL’s
mail server emits when a message contains a blocked
URL and switches to a new URL that has not yet been
blocked.

Also unique to Send Safe is the IFEMPTY macro. This
macro is used to assign default values to empty strings,
such as substituting a generic value when the value of

Macro Description Macro Description

INCLUDE Contents of a given text file {set VAR= Set the value of a variable.

ROT One of the choices inside this tag, randomly MACRO}

RNDF Random line from a given text file {static VAR} Substitute the value of a variable.

ROTF Next line from a given text file {rndabc L1,L2} Random english text with variable size (from L1

ROTF$ Next line from a given file. All tags across the to L2, in example {rndabc 5,8}).
message with the same path will be replaced {rnddig L1,L2} Random digits line with variable size (from L1
with the same line to L2).

WROTF Next word from a given text file {rnddigabc Random english text and digits line with vari-

ROTURL Current URL from a given text file. Switches L1,L2} able size (from L1 to L2).
to the next URL if current URL causes AOL’s {rndru L1,L2} Random Cyrillic text with variable size.

554 error {rndrugl L1,L2} Random Cyrillic vowels with variable size.

RND Random sequence, generated according to a {rndrusogl L1,L2} Random Cyrillic consonants with variable size.
given template. {hex_up X}, Random hexadecimal digits, upper and lower

RND$ Random sequence. All tags across the message {hex_down X} case respectively.
with the same path will be replaced with the {rndsyn Random word from set.
same line wordl,word2,word3}

RANDINSERT Inserts up to the specified number of given {rndline filename} Random line from file filename.
characters randomly in the text {rndbody file- Random file content from set.

RANDREPLACE Replaces up to the specified number of char- namel,...,filenameN}
acters with given ones randomly in the text {shuffle Randomly shuffled words wordl, ..., word3,

RNDIP Random IP from the specified range wordl,...,word3} without separators.

P Numeric value of a given IP address Similar functions using other separators.

URL Given URL with some characers are replaced {fuzzy any text Exchange two random adjacent letters in each
with their %NN codes you want } word.

HEXURL Given URL with some characters replaced with {from_domain Bot’s provider domain address, or, of domain
their &#xNNN codes (may work only if MIME filename} not available, random line from file filename.
encoding is ON) {sender_dom} Domain from ”From:” mailing address, which

EMAIL TO email address used in message.

DOMAIN TO email’s domain {sender_addr} Address from ”From:” mailing address, which

NAME TO alias used in message.

ACCOUNT To account (left part of the destination email) {sender_name} Sender name from ”From:” mailing address,

MAILLISTCOLUMNI1 Maillist’s custom column #1 which used in message.

...to 9 {receiver_dom} Receiver domain from ”To:” mailing address,

FROMEMAIL FROM email address which used in message.

FROMDOMAIN FROM email’s domain {receiver_addr} Receiver address from ”To:” mailing address,

FROMNAME FROM alias which used in message.

FROMACCOUNT FROM account (left part of originating email {receiver_name} Receiver name from ”To:” mailing address,
address) which used in message.

DATE Message DATE {server_mx} Receiver IP.

YYYY Message date’s year {proxy_ptr} Proxy IP.

S Also month, day, hour, minute second {proxy-addr} Proxy address.

PROXYDOMAIN Originating proxy’s domain name {attach_name N} Random name of attached file.

PROXYIP IP address of the proxy (current IP for direct {attach_cid N} Random CID of attached file.
mailing) {date} Current date.

OCTET1 1st octet of the proxy’s IP (current IP for di- {datetime} Current date and time.
rect mailing) {tm_year X} Current year, 4 digits.

...to 4 Similar functions for other granularities.

CHR Character with given ASCII code {imgtext X} Insert a ”text image” described in section 2.3.

IFEMPTY It’s replaced with the first argument if it’s not

empty, or with the second argument otherwise.

Table 5: Send Safe’s built-in macros.

Table 6: A subset of Reactor Mailer’s macros.

bodies.

a custom column in the mailing list file is missing.

3.2.3 Reactor Mailer

Reactor Mailer has a comprehensive library of over
60 built-in macros. Instead of having the concept of
static macros, Reactor Mailer’s macro system supports
variables. This has the added advantage over static
macros of reusability. Output from one random macro
can be saved into multiple variables, each one possi-
bly containing a different result. Table 6 lists a subset
of Reactor Mailer’s macros. Some of the descriptions
are from the English documentation, others have been
translated from the more complete Russian documen-
tation.

Macros are formatted as {macro
argumentl, ... ,argumentN}. Arguments are al-
ways comma-delimited. Reactor Mailer does not
support custom macros. Some of the macros are
template-specific and cannot be used in message

Reactor Mailer has robust random text generation, in-
sertion and manipulation functions. Setting it apart
from other tools, it can generate random vowels and
consonants in both the Latin and Cyrillic alphabets.
It can re-order a set of words to confuse anti-spam sys-
tems using n-gram models. Not only can it insert ran-
dom lines from files, it can insert random byte strings
spanning multiple lines, as seen in the Project Guten-
berg spam of 2005. (Kestenbaum, 2008)

Unlike Dark Mailer and Send Safe, Reactor Mailer can
easily update its data files while it is in the process
of mailing. This is most commonly used to rotate
URLs to avoid detection by URI blocklists such as
SURBL (Chan, 2004).

4 Case Study

To show how real spammers use these tools, we present
a template recovered from Reactor Mailer in early Jan-
uary 2008. We have exercised some artistic license

for clarity and good manners. The template for the
pornographic spam in question can be found in fig-
ure 5. While the message structure itself is invariant,
observe that all of the content is dynamic.

From: {rndline 008_wname.tx}{rndabc 1}@{rndline 003_domains.}
Subject: {rndline 001_adult.tx}

{rndline 005_hi.txt}

{rndline 001_adult.tx}
{rndline 001_adult.tx}

http://{rndline 006_sub.txt}.{rndline 000_067.txt}

{rndline 004_fin.txt}
{rndline 002_afo.txt}, {rndline 002_afo.txt}

Figure 5: A pornographic message template.

The headers of the message contain a randomly gener-
ated From address with a first name and last initial as
the username and a randomly selected subject. The
subject is chosen from a list of 422 phrases about kit-
ties and sunshine.

The message body begins with a salutation chosen ran-
domly from a list of 14. It then continues with two
phrases each randomly chosen from the same list as
the subject. The phrases are followed by a random
URL of the form http://firstname.domain where
the first name is chosen from a pool of 300 and the
domain name is chosen from a pool of 3. The message
concludes with a salutation chosen randomly from a
list of 14 and two random nonsense phrases each cho-
sen from a pool of 954.

This template can produce 28.5 quadrillion (10'°)
unique message bodies, a sample of which is found in
figure 6 and should defeat most duplicate detection
algorithms. With 422 unique phrases, string-based
methods are costly and inefficient. As there is a high
amount of duplication in the phrases file, a statistical
text classifier may be able to detect the messages after
a reasonable training period.

From: ElenaCQ@example.net
Subject: Kitten Naps In The Sun
Our special newsletter,

Schoolteacher Gives Presents to Children
Conservatively Dressed Girls Go To The Park

http://faith.example.com

Thank you for staying with us!
wrong tradition, your computer spies on you

Figure 6: Sample generated e-mail.

An interesting observation regarding the domain
names is that they are cycled out periodically. Partic-
ularly clever spammers will rotate the domain names

at the same frequency as the blocklists can update
themselves. This can be implemented using Reactor
Mailer’s download manager discussed in section 2.3.

5 Conclusions

Dark Mailer is no longer at the cutting edge of spam
technology, but remains a player due to availability.
Send Safe remains a viable spamming tool because of
ongoing development and unique feature set. Reactor
Mailer’s distributed architecture makes it the most ef-
ficient mailing system to date.

It is quite clear that Hall was correct about the in-
effectiveness of duplicate detection algorithms against
a determined adversary. As shown in our case study,
modern spammers have the tools and knowledge to
create message templates that can create an exponen-
tial number of unique messages.

Where spam was once sent using malware-infected
computers running SOCKS proxies as intermediaries,
it is now generated and sent directly by special pur-
pose malware, massively increasing message through-
put and reliability. In other cases, spam tools gather
information about the network infrastructure around
their proxies and abuse legitimate outbound SMTP
servers, reducing the effectiveness of IP-based reputa-
tion systems.

Message headers have evolved from naive attempts to
bypass spam filters to specialised mimicry of popu-
lar mail user agents, making it difficult to distinguish
spam from legitimate e-mail based on message struc-
ture alone.

Macro engines, while originally created to add random-
ness to messages, have evolved to include advanced ob-
fuscation techniques, such as word shuffling and ran-
dom noise insertion. These new techniques further in-
crease the randomness of messages and decrease the
effectiveness of signature-based detection algorithms.

As spam grows to be a more international problem,
macro engines have begun supporting multiple char-
acter sets. As new markets emerge and localised anti-
spam technologies improve, it is likely that more spam
tools will incorporate new region-specific text genera-
tion methods.

Now that template-driven spam tools have reached
maturity, anti-spam technology needs to improve. The
sheer volume of data and number of permutations that
can be produced by these tools is enough to overwhelm
traditional anti-spam systems. New techniques should
be developed that exploit the regularity of template-
generated messages.

References

Anonymous (2003). Who wrote Sobig? http://
spamkings.oreilly.com/WhoWroteSobig.pdf.

Berners-Lee, T., Fielding, R., & Masinter, L. (2005).
Uniform resource identifier (uri): Generic syntax.
http://www.ietf.org/rfc/rfc3896.txt.

Campbell, K. K. (1994). A NET.CONSPIRACY SO
IMMENSE. .. Chatting with Martha Siegel of the in-
ternet’s infamous Canter & Siegel. CuD 6.89. http:
//w2.eff.org/legal/cases/Canter_Siegel/.

Chan, J. (2004). SURBL - spam URI realtime block-
lists. http://wuw.surbl.org/.

Cranor, L. F., & LaMacchia, B. A. (1998).
Communications of the ACM, 41, 74-83.

Spam!

Damiani, E., di Vimercati, S. D. C., Paraboschi, S.,
& Samarati, P. (2004). An open digest-based tech-
nique for spam detection. ISCA PDCS (pp. 559-
564). ISCA.

Fecyk, G. (1998). Pre-announcement: Orca
DUL. news.admin.net-abuse.email newsgroup.
http://groups.google.com/group/news.admin.
net-abuse.email/msg/532ff422ba9cad12.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., &
Berners-Lee, T. (1997). Hypertext transfer pro-
tocol — HTTP/1.1. http://www.ietf.org/rfc/
rfc2068.txt.

Freed, N., & Borenstein, N. (1996). Multipurpose In-
ternet Mail Extensions (MIME) part one: Format
of internet message bodies. http://wuw.ietf.org/
rfc/rfc2045.txt.

Graham, P. (2002). A plan for spam. http://www.
paulgraham.com/spam.html.

Haight, J. (1998). Spam-no-more (a new idea for
removing spam). netscape.public.mozilla.wishlist
newsgroup. http://groups.google.com/group/
netscape.public.mozilla.wishlist/msg/
c160c051091615c5.

Hall, R. J. (1999). A countermeasure to duplicate-
detecting anti-spam techniques (Technical Report
99.9.1). AT&T Research Labs.

Hayashi, K. (2007). Spam from the kernel: Full-kernel
malware installed by MPack. Symantec Security
Response Weblog. http://www.symantec.com/
enterprise/security_response/weblog/2007/
06/spam_from the kernel fullkerne.html.

IronPort (2006). Image spam: The email epidemic
of 2006. http://www.ironport.com/technology/
ironport_image_spam.html.

Josefsson, S. (2003). The basel6, base32, and
base64 data encodings. http://www.ietf.org/
rfc/rfc3548.txt.

Kestenbaum, D. (2008). Spam goes literary.
http://www.npr.org/templates/story/story.
php?storyIld=5624749.

Koblas, D., & Koblas, M. R. (1992). SOCKS. UNIX
Security IIT Symposium (pp. 77-83). Baltimore,
MD: USENIX.

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., &
Jones, L. (1996). SOCKS protocol version 5. http:
//www.ietf.org/rfc/rfc1928.txt.

MAPS (2004). Introduction to the Realtime Blackhole
List (RBL) servers. http://www.mail-abuse.com/
pdf /WP_MAPS_RBL_060104 . pd.

MAPS (2005). How to secure your mail system against
third-party relay: Sendmail version 5. http://www.
mail-abuse.com/an_sec3rdparty.html.

Marshal (2008). Srizbi now leads the spam pack.
TRACE Blog. http://www.marshal.com/trace/
traceitem.asp?article=567.

Mason, J. (2002). Spamassassin public cor-
pus. http://spamassassin.apache.org/
publiccorpus/readme.html.

McWilliams, B. (2005). Spamming for the lord.
Spam Kings Blog. http://spamkings.oreilly.
com/archives/2005/03/spamming for_th.html.

Mockapetris, P. (1983). Domain names - concepts and
facilities. http://www.ietf.org/rfc/rfc882.txt.

Postel, J. B. (1982). Simple mail transfer protocol.
http://www.ietf.org/rfc/rfc821.txt.

Prakash, V. V. (1999). Vipul’s razor. http://razor.
sf.net.

Resnick, P. (2001). Internet message format. http:
//www.ietf.org/rfc/rfc2822.txt.

Shukovsky, P. (2008). ‘Spam king’ pleads guilty.
Seattle Post-Intelligencer. http://seattlepi.
nwsource.com/local/355083_spamkingl5.html.

Stewart, J. (2003). Sobig.a and the spam you received
today. SecureWorks. http://www.secureworks.
com/research/threats/sobig/.

Stewart, J. (2007). Inside the “Ron Paul” spam bot-
net. Secure Works. http://www.secureworks. com/
research/threats/ronpaul/.

