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Abstract

Phishing emails are a real threat to inter-
net communication and web economy. Crim-
inals are trying to convince unsuspecting on-
line users to reveal passwords, account num-
bers, social security numbers or other per-
sonal information. Filtering approaches us-
ing blacklists are not completely effective as
about every minute a new phishing scam is
created. We investigate the statistical filter-
ing of phishing emails, where a classifier is
trained on characteristic features of existing
emails and subsequently is able to identify
new phishing emails with different contents.
We propose advanced email features gener-
ated by adaptively trained Dynamic Markov
Chains and by novel latent Class-Topic Mod-
els. On a publicly available test corpus clas-
sifiers using these features are able to reduce
the number of misclassified emails by two
thirds compared to previous work. Using a
recently proposed more expressive evaluation
method we show that these results are statis-
tically significant. In addition we successfully
tested our approach on a non-public email
corpus with a real-life composition.

1 Introduction

In the last years email traffic has shown a rapid expan-
sion of phishing, the practice of luring users to fraud-
ulent websites. Criminals are trying to convince un-
suspecting online users to reveal passwords, account
numbers, social security numbers or other personal
information. To this end they send faked messages
disguised as coming from reputable online businesses,
such as financial institutions.

Phishing has increased enormously over the last
months and is a serious threat to global security and

economy. A recent in-lab experiment shows that a
up to 90% of the users are fooled by good phishing
websites [10]. To avoid extensive losses different au-
thors have proposed to determine characteristic fea-
tures of phishing emails. These features serve as in-
puts to statistical classification techniques, which are
then trained to identify phishing emails.

In this paper we evaluate features derived from emails
with respect to their ability to detect phishing scams.
We develop two new model-based features that outper-
form basic features proposed in previous approaches.
In particular, this paper makes the following contribu-
tions:

• We apply the Dynamic Markov chain compression
to the phishing detection problem and propose an
adaptive training algorithm that reduces memory
requirements by about two thirds.

• We propose a novel target-specific latent Dirich-
let topic model that is an extension of the stan-
dard LDA technique and performs better for topic
numbers of up to 100.

• We show that classifiers trained using features ex-
tracted with these two techniques clearly outper-
form the previous benchmark.

• We employ a recently proposed evaluation strat-
egy that allows to determine the significance of
improvements and show that our improvement is
indeed statistically significant.

The paper is organized as follows. Section 2 describes
the current state of the art. In Section 3 we intro-
duce statistical approaches to phishing filtering. The
following Section 4 is devoted to the description of fea-
tures, especially the two new model-based features not
yet used for phishing email detection. Section 5 de-
scribes our feature processing and selection approach.
In Section 6 we introduce the test corpora and the
evaluation strategy. Section 7 presents results of the



empirical evaluation. Finally we summarize the results
and draw some conclusions in Section 8.

2 Current State

In a typical phishing attack the phisher sends out
emails pretending to come from a reputable institu-
tion, e.g., a bank. In general, two approaches to phish-
ing prevention are possible: website and email filter-
ing.

2.1 Website Filtering

One approach of phishing prevention concentrates on
filtering websites when they are rendered in a web
browsers. In Mozilla Firefox, for instance, each web
page requested by a user is checked against a blacklist
of known phishing sites [20]. This list is automati-
cally downloaded to the local machine and updated
in regular intervals. It is well-known, however, that
new phishing sites appear frequently. In October 2007
about 46 new phishing sites were detected per hour
[2]. The average time for phishing sites to be online
is only 3.1 days; many sites disappear within hours.
Therefore the effectiveness of blacklisting is limited.
Whitelist approaches, which maintain a list of “good”
URLs, have also been implemented. However, it turns
out that it is very difficult to register large numbers of
variants of legitimate sites.

To capture new phishing sites content-based filtering
approaches may be used. Internet Explorer 7, for in-
stance, offers a built-in classifier that filters web pages
based on their characteristics. The accuracy of detect-
ing phishing sites by statistical methods leaves room
for improvement. Zhang et al. [22] report that they
are able to catch about 90% of phishing sites with 1%
false positives. Miyamoto et al. [19] yield a true posi-
tive rate of 94% with a false negative rate of 0% based
on a limited sample of 100 websites.

WholeSecurity’s Web Caller-Id1 technology claims to
detect 98% of phishing websites. It intercepts a web
page, which it tests for spoof-site risk factors, including
the URL, the depth of the website, and whether the
domain name was recently registered. Then the page
gets scored, and if it fails, a report gets sent to toolbar
customers.

2.2 Email Filtering

In this paper we use an alternative source of filtering
information, the content of the original email. Phish-
ing emails usually contain specific phrases asking users

1http://www.webcallerid.net

to submit information or to access the phishing web-
site. In conjunction these phrases often may be used as
indicators for phishing and can be detected by filtering
the content of emails.

In recent years spam filters have been widely dis-
cussed [13]. However, the identification of phishing
emails is different from spam classification. A spam-
mer simply wants to contact a user and inform him
about some product while the phisher has to deliver a
message, which has an insuspicious look and pretends
to come from some reputable institution. Therefore
many techniques used in spamming, like deliberate ty-
pos to defeat spam filters, usually do not appear in
phishing emails. Hence, different features and tech-
niques have to be employed if phishing emails are to
be detected.

Recently, classifiers have been applied to phishing
email identification. Chandrasekaran et al. [6] start
with the following features: (1) a number of style
marker features for emails, (2) structural attributes,
and (3) the frequency distribution of selected function
words (e.g., ”click”). They evaluate these features for
a small corpus of 400 emails and achieve good results.
In contrast to the approach of many machine learn-
ing studies the authors do not evaluate different splits
between training and testing data, which makes the
significance of the results difficult to assess.

Abu-Nihmeh et al. [1] investigate the performance of
different popular classifiers used in text mining, e.g.,
logistic regression, random forests and support vector
machines. A public collection of about 1700 phishing
emails and 1700 legitimate emails from private mail-
boxes is used. For this setup the random forest classi-
fier yields the best result with an F-measure of 90%.

Fette et al. [11] follow a similar approach but use a
larger publicly available corpus of about 7000 legiti-
mate (ham) emails and 860 phishing emails. They pro-
pose ten different features to identify phishing scams.
Nine of these features can be extracted from the email
itself, while the tenth feature, the age of linked-to do-
main names, has to be obtained by a WHOIS query at
the time the email is received. Another feature the au-
thors include is the score of a publicly available spam-
filter, the SpamAssassin 2. By 10-fold cross-validation
Fette et al. arrive at a false positive rate of 0.13% and
a false negative rate of 3.6%, which corresponds to an
F-measure of 97.6%.

3 Machine Learning Approach

Machine learning techniques, in particular automatic
classification, have become popular in email spam

2http://spamassassin.apache.org



and phishing detection. In contrast to manually con-
structed filter rules they automatically assess the rel-
evance of input features x = (x1, . . . , xm) (e.g., email
characteristics) and establish a function to determine
the desired classification y (e.g., phishing or non-
phishing)

y = f(x, γ)

The vector of unknown parameter values γ is de-
termined in a training phase in such a way that
the relation between x and y in the observed data
(x1, y1), . . . , (xD, yD) is reproduced according to some
optimization criterion. In the application phase the
same features are extracted from a new incoming
email. Based on these features and the model the clas-
sifier produces a classification of the email. The overall
machine learning approach is summarized in Figure 1.
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Figure 1: The machine learning approach

To assess a classifier’s performance different quality
metrics can be measured on an independent test set
not used during the training phase.

4 Features for Email Data

In this section we present the features that serve as
input to our classifiers. We start with basic features
and continue with new advanced features based on dy-
namic Markov chains and latent topic models.

4.1 Basic Features

One main characteristic of phishing emails is that they
aim at leading users to some website where they reveal
private data. It is thus natural to look at the email
structure and external links for the detection of phish-
ing emails.

In this section we describe the basic features we use,
which differ from the list proposed by Fette et al. [11]
in two ways. First, our list is somewhat larger. We
extract a total of 27 basic features. Second, we only
use features that can be derived directly from the email
itself. In particular, we do not use features that require

information about specific websites, such as the age of
linked-to domains.

Structural Features (4) Structural features reflect
the body part structure of an email. The MIME
standard defines a number of possible message for-
mats. We record four features: the total number
of body parts, the number of discrete and com-
posite body parts and the number of alternative
body parts, which are different representations of
the same content.

Link Features (8) Link features reflect various
properties of links contained in an email. We
record eight features: the total number of links,
the number of internal and external links, the
number of links with IP-numbers, the number of
deceptive links (links where the URL visible to the
user is different from the URL the link is point-
ing to), the number of links behind an image, the
maximum number of dots in a link, and a Boolean
indicating whether there is a link whose text con-
tains one of the following words: click, here, login,
update.

Element Features (4) Element features reflect
what kinds of web technologies are used in
an email. We record four Boolean features of
whether HTML, scripting and in particular
JavaScript, and forms are used.

Spam Filter Features (2) Next, we use an un-
trained, off-line version of SpamAssassin to gen-
erate two features, the score and a Boolean of
whether or not an email is considered as spam. A
message is considered spam if its score is greater
than 5.0. It is important to note that we consider
only features intrinsic to an email; we do not use
any kinds of black- or whitelists. In a real-life
scenario, the inclusion of such information would
probably lead to performance improvements.

Word List Features (9) Finally, we use a positive
word list, i.e., a list of words hinting at the pos-
sibility of phishing. For each word in the list we
record a Boolean feature of whether or not the
word occurs in the email. The list contains a to-
tal of nine word stems: account, update, confirm,
verify, secur, notif, log, click, inconvenien.

In the remainder of this section we propose two kinds
of advanced features. Both of these can be viewed
as classifiers themselves, because they are based on
models. The outputs of these models serve as features
in our global email classification process.



4.2 Dynamic Markov Chain Features

Dynamic Markov Chain features are based in informa-
tion theory and capture the likelihood of a message be-
longing to a specific class. We extract these likelihoods
as well as class membership indicators as features for
our classification system.

The dynamic Markov chain generation is a technique
developed for arithmetic compression [8], the problem
of compressing arbitrary binary sequences. A sequence
is thought to be generated by a random source. This
source can be approximated by a dynamically con-
structed Markov chain. Cormack et al. developed a
technique for the incremental construction of a Markov
chain [8]. These dynamic Markov chains have been
successfully applied to text classification problems in
various domains [17, 12]. Each class is considered as a
different source, and each text belonging to the class
is treated as a message emitted from the correspond-
ing source. The source is approximated by incremen-
tally enhancing the initial starting chain. Given a suf-
ficiently large number of training examples the iter-
ative approximation of the unknown source permits
the accurate estimation of the likelihood that a given
sequence originated from that source. By comparing
these likelihoods for different sources the sequence may
be classified.

Bratko et al. [5] achieve good results for the classifica-
tion of spam emails using the dynamic Markov chain
method. They point out that one limitation of the
method is the high memory requirement. In contrast
to their work we convert emails into plain text meaning
that all headers etc. are removed and file attachments
are discarded. The reason for the exclusion of header
information is that we feel they might make synthetic
test data trivially separable through the inclusion of
domain names or IP addresses.

The Markov chain classification can be summarized
as follows. The cross-entropy (CE) H(x,M) between
the message x and the source approximated by the
model M is a measure for the likelihood that a message
x with the binary representation (b1 . . . bn) originated
from that source. The cross-entropy [9] is defined as:

H(x,M) = − 1
n

log
n∏

i=1

p(bi|bi−1
1 ,M)

where p(bi|bi−1
1 ,M) is the probability of seeing bit bi

based on the previous bits b1 . . . bi−1 of the message.
The class to which message x has the lowest cross en-
tropy is the one it most likely originated from. There-
fore the classification of x can be formulated based on
the minimal cross entropy to all classes C as:

f(x) = arg min
c∈C

H(x,Mc)

where Mc is the model for class c ∈ C.

Our intention is to reduce the size of the Markov mod-
els to overcome the limitations of the approach. To
this end we reduce the number of training examples
by using an efficient heuristic to judge the value of
each specific example in terms of impact on the clas-
sification accuracy, similar to uncertainty sampling in
active learning [16].

Let M1,k
c be the model that is generated after pro-

cessing the training examples x1, . . . ,xk of a class c.
During the incremental model generation we think of
H(xi,M

1,i−1
c ) as the expected cross entropy of a train-

ing message xi and the model M1,i−1
c . Let the empir-

ical standard deviation of the expected cross entropies
σ̂(k) of M1,k

c be

σ̂(k) =

√√√√ 1
k − 2

·
k−1∑
i=1

(
H(xi,M

1,i−1
c )−H(x,M1,i−1

c )
)2

where H(x,M1,i−1
c ) = 1

i−1

∑i−1
j=1 H(xj ,M

1,j−1
c ). To

choose an example for training based on its useful-
ness for the classification accuracy we compare its cross
entropy with the average and the standard deviation
from the previous training steps. In other words, we
only want to use training examples that the model can-
not already classify well enough. We skip sequences
that are most likely in the set of typical sequences for
a source and use only training examples xi for which
the following equation holds:

H(xi,M
1,i−1
c )−H(x,M1,i−1

c ) > ρ · σ̂(i) (1)

with a given adaptation rate ρ. Our adaptive train-
ing uses a fixed percentage τ of the training data for
the generation of an initial model and then applies the
heuristic Equation 1 to automatically adapt the train-
ing process. As will be empirically shown our heuris-
tic adaptation technique limits the amount of space
needed for each model by about two thirds.

For email classification we build two models, one for
ham emails and one for phishing emails. We extract
four DMC features: the H(x,M)-values for each of
the two models and two Boolean features indicating
membership in either class.

4.3 Latent Topic Model Features

Semantic features are content-based indicators from
email messages and are extracted in a data-driven way
using latent topic models. These latent topics are clus-
ters of words that tend to appear together in emails.
We can expect that in a phishing email the words
“click” and “account” often appear together, while in
regular financial emails the words “market”, “prices”



and “plan” may co-occur. Latent topic models gen-
erate such features by exploiting the co-occurrence of
words in a training set of emails.

Usual latent topic models do not take into account
different classes of documents, e.g. phishing or non-
phishing. We developed a new statistical model, the
latent Class-Topic Model (CLTOM), which is an ex-
tension of latent Dirichlet allocation (LDA) [3] in such
a way that it incorporates category information of
emails during the model inference for topic extraction.
This method yields word clusters, which are more fo-
cused to the distinction of phishing emails from legit-
imate emails.

We first have to train the class-topic model using a
training collection of emails annotated with classes.
The estimated model may be applied to a new, uncat-
egorized email and assigns a latent topic to each word
of the email. The proportions of the different topics in
the email then serve as input features for the classifier.

wzθcλ

βkαc

D
Nd

C K

Figure 2: The graphical model of CLTOM

We now describe the class-topic model in more detail.
The CLTOM assumes a probabilistic generative pro-
cess for content of a message. We assume that there
are C different email classes (e.g., phishing and non-
phishing) and K different latent topics, where K is
a parameter fixed in advance. First, a class indicator
c ∈ {1, . . . , C} is sampled from a multinomial distribu-
tion parameterized by λ = (λ1, . . . , λC). Given class
c a K-dimensional probability vector θ = (θ1, . . . , θK)
for the topic composition of the message is generated
by a Dirichlet distribution parameterized by αc =
{αc1, . . . , αcK}. Then, for each word position n in the
message, a topic zn is sampled from the multinomial θ.
Finally a word wn is randomly generated according to
a topic-specific word distribution, which is a multino-
mial parameterized by βzn

describing the probability
βzn,w for each possible word w in the set of all possible
words W. Under this assumption, the probability of
the N words w = (w1, . . . , wN ) in an email is

p(w|λ, α, β) = p(c|λ)
∫

p(θ|α, c)
N∏

n=1

p(zn|θ)p(wn|zn,β)dθ.

By the introduction of the class variable c and sep-
arate parameters αc for each class, the model is ex-

pected to capture more class-relevant semantic fea-
tures compared with fully-unsupervised LDA. Note
that the word order in a message content is not con-
sidered; a message is represented as a bag-of-words.
Figure 2 shows the graphical model of CLTOM, which
summarizes the stochastic process mentioned above.

The learning of the CLTOM is done using a variational
EM algorithm [3]. For a corpus D = {w1, . . . ,wD},
the bag-of-word representation of a collection of train-
ing examples x1, . . . ,xD, the log-likelihood is

L = log p(D|λ, α, β) =
D∑

d=1

log p(wd|λ, α, β). (2)

Here, the exact posterior inference for latent vari-
ables is intractable, so we employ a mean-field vari-
ational method for the inference of {(cd, θd, zd)}D

d=1.
For a message wd, the distribution of latent vari-
ables (cd, θd, zd) is fully factorized as q(cd, θd, zd) =
q(cd|νd)q(θd|ηd)

∏Nd

n=1 q(zdn|φdn). Two kinds of vari-
ational parameters νd and φdn characterizes the pos-
terior multinomial distribution for cd and zdn, and ηd

is the variational parameter of the posterior Dirichlet
q(θd|ηd). Then, the log-likelihood in (2) can be lower-
bounded by

L ≥
D∑

d=1

(Eqd
[log(cd|λ)] + Eqd

[log(θd|cd, α)]

+Eqd
[log(zd|θd)] + Eqd

[log(wd|zd, β)] + H(qd))
≡ F ,

where qd = q(cd, θd, zd) and H(qd) is the entropy term
for the posterior distribution qd.

We maximize the lower bound F based on the varia-
tional approximation. In the E-step of the variational
EM algorithm, the distribution for hidden variables
q(c), q(θ), and q(z) are estimated. Actually, q(cd) for
training messages are fixed prior to learning, because
the category information is already given for messages
in training corpus. In the M-step, the model parame-
ters λ, α, and β are determined. Two multinomial pa-
rameters λ and β can be calculated in closed form. The
Dirichlet parameter α is estimated in an iterative way
using a Newton-Raphson method [18], because there
is no closed-form solution for the parameter. These
steps are iteratively alternated until convergence.

When a new message wm arrives, the semantic fea-
tures for the message are derived through an inference
in the trained CLTOM. In this application phase to a
new message, unlike the training phase, q(c|νm) is also
estimated along with q(θ|ηm) and q(z|φm), because
the category information is not known for the newly
arriving message. Finally, the posterior mean value



θ̄m = (θ̄m1, θ̄m2, . . . , θ̄mK), θ̄mk = ηmk/
∑

l ηml, is cal-
culated from the Dirichlet q(θ|ηm), and is provided as
the semantic feature for the incoming message.

5 Feature Processing and Feature
Selection

The features used in our system come from a variety
of different sources. It is thus necessary to postprocess
them to supply the classifiers with unified inputs.

5.1 Feature Processing

It is not advisable to directly use the unmodified fea-
ture values as input for a classifier. We perform scaling
and normalization. Scaling guarantees that all features
have values within the same range. Many classifiers
are based on distance measures, such as the Euclidean
distance, which overemphasizes features with large val-
ues. We perform a Z-transformation to ensure that all
features have an empirical mean of 0 and an empirical
standard deviation of 1. Additionally, we normalize
the length of the feature vectors to one, which is ade-
quate for inner-product based classifiers.

5.2 Feature Selection

In practice, machine learning algorithms tend to de-
grade in performance when faced with many features
that are not necessary for predicting the correct label
[14, 21]. The problem of selecting a subset of relevant
features, while ignoring the rest, is a challenge that
all learning schemes are faced with. Feature selection
in a supervised learning setting can be understood as
a search in a state space. In this space every state
represents a feature subset. Operators that add and
eliminate single features determine the connection be-
tween the states. Because there are 2n − 1 different
non-empty subsets of n features, a complete search
through the state space is impractical and heuristics
need to be employed.

A common and widely used technique is the wrapper
approach proposed by Kohavi et al. [15]: a search al-
gorithm uses the classifier itself as part of the evalua-
tion function. The classifier operates on an indepen-
dent validation set; the search algorithm systemati-
cally adds and subtracts features to a current subset.
In our experiments, we apply the so-called best-first
search strategy, which expands the current node (i.e.,
the current subset), evaluates its children and moves to
the child node with the highest estimated performance.
To overcome local maxima, the most promising nodes
that have not been expanded are maintained in a list
and are considered if no improvement can be found.
If in k expansions no improved node can be found,

the search will be terminated. To avoid overfitting a
node is considered an improvement if its estimation
exceeds the estimation of the best node found so far
by a factor of at least ε. In addition, we combine the
best-first search engine with compound operators [15],
which dynamically combine the set of best-performing
children. The underlying idea is to shorten the search
for each iteration by considering not only the infor-
mation of the “best” child node (as described in the
greedy approach above) but also the other evaluated
children. More formally, by ranking the operators with
respect to the estimated performance of the children a
compound operator ci can be defined to be the com-
bination of the best i + 1 operators.

6 Evaluation Criteria and Data

In this section we outline the evaluation method we
used for testing our approach and we give details about
the used data.

6.1 Evaluation Method

We use 10-fold cross-validation as our evaluation
method and report a variety of evaluation measures.
For each email four different scenarios are possible:
true positive (TP, correctly classified phishing email),
true negative (TN, correctly classified ham email),
false positive (FP, ham email wrongly classified as
phishing), and false negative (FN, phishing email
wrongly classified as ham). For comparison reasons we
report accuracy, i.e., the fraction of correctly classified
emails. This measure is only of limited interest in a
scenario where the different classes are very unevenly
distributed.

More importantly, we report standard measures, such
as precision, recall, and F-measure as well as the false
positive and the false negative rate. These measures
are defined as:

precision =
|TP |

|TP |+ |FP |
recall =

|TP |
|TP |+ |FN |

f =
2 · precision · recall

precision + recall

fpr =
|FP |

|FP |+ |TN |
fnr =

|FN |
|TP |+ |FN |

Note that in email classification, errors are not of equal
importance. A false positive is much more costly than
a false negative. It is thus desirable to have a classifier
with a low false positive rate.

For some of the experiments we additionally perform
repeated (10 times) 10-fold cross-validation. It cor-
rects the statistical dependency of samples in normal



cross-validation. This leads to a nearly unbiased esti-
mate of the variability of the final performance mea-
sures and in addition to more precise average values
as argued in [4]. In particular, they propose to use
a corrected t-statistic. For an r-times k-fold cross-
validation let xij denote the observed difference of
evaluation in the j-th fold of the i-th repetition and
let

µ̂ =
1

r · k

r∑
i=1

k∑
j=1

xij

be the empirical mean and

σ̂2 =
1

r · k − 1

r∑
i=1

k∑
j=1

(xij − µ̂)2

be the empirical variance, then

t =
µ̂√

( 1
r·k + n2

n1
)σ2

gives the corrected t-statistic with df = r ·k−1 degrees
of freedom. In the formula n1 denotes the number of
instances in the training set and n2 the number of
instances in the test set.

6.2 Test Corpora

For the evaluation of phishing filtering it is espe-
cially difficult to provide standardized publicly avail-
able data. Due to privacy regulations it is virtually
impossible to obtain a representative corpus contain-
ing legitimate emails. We evaluate our system and the
usefulness of our new features on a number of different
corpora. The summary of the key figures of each used
corpora is given in Table 1.

Corpus Size Ham Phishing
Base07 7808 6951 (89%) 857 (11%)
JNNEW 10653 6951 (65%) 3702 (35%)
JNFULL 11510 6951 (61%) 4559 (39%)
Nov06 3472 3156 (91%) 316 (9%)

Table 1: Summary of the used corpora

The first corpus Base07 is the same corpus that was
used by Fette et al. [11]. The phishing emails were
collected by Nazario and made publicly available on
his website3. The ham emails were taken from the
publicly available SpamAssassin corpus4.

Recently, Nazario made more phishing emails avail-
able. This permits the construction of more com-
prehensive corpora. Nazario provides two new collec-
tions of phishing emails gathered between November

3http://monkey.org/˜jose/wiki/doku.php?id=phishingcorpus
4http://spamassassin.apache.org/publiccorpus/

2005 and August 2007 and containing a total of 3702
emails. Using these additional phishing emails and
the previously used SpamAssassin ham emails we con-
structed two new corpora JNNEW and JNFULL. For the
corpus JNNEW we use the only the new phishing email
collections, whereas the JNFULL contains all phishing
emails publicly available from Nazario, including the
ones used in the Base07 corpus.

Fette et al. point out that it would be desirable to per-
form experiments on data from a real-world mailbox.
To this end, we use the dataset Nov06, which contains
emails that were received during the month of Novem-
ber 2006 and manually labeled into ham and phishing.
This dataset follows the expected distribution of ham
and phishing emails in the mailbox of a common user.

7 Empirical Results

In our experiments we have used different classifiers,
mainly the Support Vector Machine (SVM) classifier
implemented in the libSVM-library [7]. The RBF ker-
nel with parameters C = 10 and γ = 0.1 turned out to
be most accurate and stable. We have also run exper-
iments using other classifiers, e.g., maximum entropy
and decision trees. The difference in most cases were
negligible.

7.1 Added Value of Advanced Features

Table 2 shows the basic classification results using 10-
fold cross-validation and the complete set of features
for the Base07 corpus and results for different subsets
of features. The complete set of features consists of 81
features, 27 basic features plus K = 50 topic features
plus four DMC features.

We can see that the error in terms of F-measure, i.e.,
1−f , is reduced by almost 70% when compared to the
work of Fette et al. The very low false positive rate
indicates that virtually no legitimate email is lost. In
addition, the more statistically founded evaluation ap-
proach using 10-times 10-fold cross-validation gives an
average F-measure of 99.22% for our approach with an
empirical variance of 5.34 · 10−5. This leads to a cor-
rected t-statistic of 6.221. If we assume that the result
of Fette et al. comes from a distribution with the same
variance, then we arrive at paired t-statistic of 3.111,
which indicates that our results, for 99 degrees of free-
dom, are statistically significant with a probability of
99.88%.

Our system performs worse than the original system
by Fette et al. if we restrict ourselves to our basic set
of features. We believe the reason is that we do not
use extrinsic features, such as the age of the linked-
to domain. Such features are undoubtedly useful, but



Features Accuracy FP-Rate FN-Rate Precision Recall F-Measure Error Red.
[Fette et al.] 99.49% 0.13% 3.62% 98.92% 96.38% 97.64% –
All features 99.85% 0.01% 1.30% 99.88% 98.70% 99.29% 69.92%
Basic features 99.13% 0.20% 6.39% 98.26% 93.61% 95.88% -74.58%
DMC features 99.56% 0.00% 4.02% 100.00% 95.98% 97.95% 13.14%
Topic features (K = 50) 99.53% 0.20% 2.72% 98.33% 97.28% 97.80% 6.78%
DMC + Topic features 99.77% 0.03% 1.89% 99.76% 98.11% 98.93% 54.66%
Feature selection 99.88% 0.00% 1.07% 100.00% 98.93% 99.46% 77.12%

Table 2: Classification results for different feature sets on corpus Base07

make repetition of experiments hard if not impossible.
In addition we performed a simple experiment out of
curiosity. We trained a classifier on one basic feature
only: the number of deceptive links. This feature in-
tuitively seems to be the most characteristic, however,
the results were disappointing. While the false positive
rate was surprisingly low at 1.37% the false negative
rate was 67.46% indicating that many phishing emails
were missed.

The table also indicates that each of the two new fea-
ture groups alone surpasses the performance of the
Fette et al. system by a small margin. Both of the
new feature groups combined already clearly outper-
form the previous system. In particular, the false posi-
tive rate is already close to perfect. In other words, the
addition of the basic features improves only the false
negative rate. The basic features capture some of the
missed phishing emails. We believe the reason for that
observation is that the advanced features are based
purely on the textual content of the email. Structural
aspects helping to identify some of the phishing emails
are added through the basic features. This argument
is supported by our observations from the feature se-
lection experiments.

7.2 Feature Selection

We performed feature selection as described in Sec-
tion 5.2 and set the parameters k = 5 and ε = 0.1%
as suggested in [15]. In the cross-validation experi-
ments we used feature selection on each individual fold
to make the result more comparable to related work.
Note that we no longer can use 90% of the data for
training in each individual fold, because we reserve
20% of the training data for the feature selection pro-
cess, i.e., for the validation of individual models based
on different feature sets. As shown also in Table 2 we
achieved an even better result using fewer features and
less training data.

We also observed which features were selected in the
process. Besides our DMC and topic features some
structural features (total number of body parts, num-
ber of discrete and composite body parts), some link

features (total number of links, number of deceptive
links, number of image links) and the two SpamAs-
sassin features placed among the selected ones. This
seems reasonable as the structural features are com-
plementary to the purely content-based advanced fea-
tures. In addition, the rule-based SpamAssassin algo-
rithm also covers a lot of different aspects of an email.

7.3 Different Test Corpora

Table 3 shows the basic classification results using 10-
fold cross-validation and the complete set of features
for our different corpora. The results for the extended
corpora JNNEW and JNFULL are similar to the results
for Base07. On the other hand we can observe that
our results on the Nov06 corpus are somewhat inferior.
We believe that the cause for this observation lies in
the fact that the public corpora are somewhat artifi-
cial in that they are collected from diverse sources and
even cover different time periods. Our real-life cor-
pus contains ham and phishing emails from the same
month and seems to provide a harder challenge. We
looked into the misclassified emails. Among the false
negatives there are many emails consisting of just an
image, where the link to the phishing website is be-
hind the complete image. Another typical false neg-
ative is the eBay item request, in which the phishing
link is hidden behind some “Click here to answer the
request.”-statement. The false positives were often fi-
nancial newsletters or account confirmation emails.

7.4 Further Investigation of Advanced
Features

We conducted experiments to evaluate the space sav-
ings achieved using the adaptation approach for dy-
namic Markov models. We tested our approach for
different adaptation rates ρ with a 10-fold cross-
validation on the corpus Base07 and achieve good re-
sults over a wide range of rates as shown in Figure 3.
The size of the model decreases by a large amount
whereas the classification quality remains nearly con-
stant. We conclude that the utilization of training
examples that can be predicted sufficiently well is in-



Corpus Features Accuracy FP-Rate FN-Rate Precision Recall F-Measure
Base07 [Fette et al.] 99.49% 0.13% 3.62% 98.92% 96.38% 97.64%
Base07 All features 99.85% 0.01% 1.30% 99.88% 98.70% 99.29%
JNNEW All features 99.61% 0.07% 0.99% 99.86% 99.01% 99.44%
JNFULL All features 99.52% 0.07% 1.11% 99.89% 98.89% 99.39%
Nov06 All features 99.19% 0.16% 7.28% 98.32% 92.72% 95.44%

Table 3: Classification results using all features

deed not expedient. Even when using a small adap-
tation rate the model size decreases already by about
two thirds. As the adaptation rate increases further
the model size decreases only by a small amount. This
indicates that any atypical message is usually very dif-
ferent from the model learned thus far and hence is
used even for high adaptation rates. We think that
our adaptive generation process comes close to heuris-
tically estimating a good training set for the phish-
ing email classification problem. Further experiments
have to be conducted to show if our novel approach
could also be applied to other text classification prob-
lems.
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Figure 3: Results for the adaptive DMC approach.
The F-measure is derived from the classification based
solely on DMC features.

We also conducted experiments on the latent topic fea-
tures to detect the influence of the parameter K indi-
cating the number of topics and to compare our new
CLTOM technique to the well-established LDA. The
results depicted in Table 4 indicate that an increase in
the number of topics leads to an improved overall clas-
sification performance. More phishing-specific topics
can be extracted by the increase of the total number
of topics in the model. One can also see that CLTOM
outperforms LDA for lower topic numbers, whereas
LDA catches up for larger topic numbers. The rea-
son for that, we believe, is that LDA only estimates
one Dirichlet parameter whereas CLTOM estimates

K times the number of classes Dirichlet parameters.
Hence, for very large topic numbers CLTOM is prone
to overfitting. For reasonable topic numbers, however,
the benefits of including class-relevant information are
noticeable. In addition, Table 5 shows some of the
phishing-related topics, represented by their ten most
probable words.

K Prec. Recall F F (LDA)
5 94.59% 95.27% 94.93% 92.00%
10 96.82% 97.16% 96.99% 94.71%
25 96.94% 97.63% 97.29% 96.67%
50 98.33% 97.28% 97.80% 97.08%
100 99.16% 97.75% 98.45% 97.98%

Table 4: CLTOM-results and LDA comparison for dif-
ferent topic numbers

α = 1.5430 α = 1.0192 α = 0.9542 α = 0.7230
please security information ebay
account paypal help policy
update secure link updated
click e-mail access records
online protect following agreement
card accounts provide privacy
receive account limited user
thank password personal department
bank team protection trademarks
customer protecting complete suspended

Table 5: Example of phishing-related topics extracted
by CLTOM with K=50. Higher values of the Dirichlet
parameter α indicate higher relevance for the phishing
class.

8 Conclusion

We employ statistical classification methods to classify
emails as legitimate (ham) or phishing emails. We in-
troduce two new types of features generated by adap-
tive Dynamic Markov Chains (DMC) and by latent
Class-Topic Models (CLTOM). Our adaptive DMC ap-
proach reduces the memory requirements compared
to the standard DMC approach by two thirds almost



without any loss in performance. Our CLTOM ap-
proach, which incorporates class-specific information
into the topic model, outperforms the standard LDA
approach for topic numbers of up to 100. Classifiers
incorporating these features as input are able to sub-
stantially outperform previous approaches on publicly
available benchmark corpora.

Due to privacy regulations it is extremely difficult to
obtain a representative set of legitimate and phishing
emails from real users. We tested our approach on
another non-public email corpus with a more realistic
composition. Here the level of accuracy turned out to
be a bit lower. We plan to obtain additional features
by analyzing attached images and by classifying the
content of the linked-to websites.
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