
Detecting Known and New Salting Tricks in Unwanted Emails

André Bergholz, Gerhard Paaß,
Frank Reichartz, Siehyun Strobel

Fraunhofer IAIS
Schloß Birlinghoven

53754 St. Augustin, Germany
firstname.lastname@iais.fhg.de

Marie-Francine Moens
Katholieke Universiteit Leuven

Department of Computer Science
Celestijnenlaan 200A

3001 Heverlee, Belgium
sien.moens@cs.kuleuven.be

Brian Witten
Symantec Corporation

12801 Worldgate Drive, Suite 800
Herndon, VA 20170, USA

brian witten@symantec.com

Abstract

Spam and phishing emails are not only an-
noying to users, but are a real threat to inter-
net communication and web economy. The
fight against unwanted emails has become a
cat-and-mouse game between criminals and
people trying to develop techniques for de-
tecting such unwanted emails. Criminals are
constantly developing new tricks and adopt
the ones that make emails pass spam fil-
ters. We have developed a systems that en-
ables the detection of certain common salting
tricks that are employed by criminals. Salt-
ing is the intentional addition or distortion of
content. In this paper we describe a frame-
work to identify email messages that might
contain new, previously unseen tricks. To
this end, we compare the simulated perceived
email message text generated by our hid-
den salting simulation system to the OCRed
text we obtain from the rendered email mes-
sage. We present robust text comparison
techniques and train a classifier based on the
differences of these two texts. In simulations
we show that we can detect suspicious emails
with a high level of accuracy.

1 Introduction

In the last years email traffic has shown a rapid expan-
sion of spam and phishing. Spam and phishing emails
are not only annoying to users, but a real threat to
internet communication and web economy. With the
introduction of automatic email spam filtering a cat-
and-mouse game between the spammers and the fil-
ter developers has been initiated. The spammers are
developing tricks that they hope will get their emails
through the filters, and the filter developers are adapt-
ing their filters. One popular method that spammers

are using is to include a high percentage of “real” text
in their spam messages to fool text-based email filters,
a method known as “good word attack” [9].

Salting is the intentional addition or distortion of con-
tent, usually in spam emails, aimed to obfuscate or
evade automatic filtering. There exists surface salting,
e.g., images containing random pixel dots, and hidden
salting, e.g., text in invisible color. We have developed
a hidden salting simulation model based on cognitive
theory [2]. For an input email the model simulates
which text will actually be seen by the user based on
a fixed set of known salting tricks. In addition, the
model indicates how many times each of the known
salting tricks was used in the email.

In this paper we close the loop and address the prob-
lem of identifying when our hidden salting simulation
system fails, most likely because some spammer has
come up with a yet unknown salting trick. To this
end, we try to detect differences between the simulated
perceived text as generated by our hidden salting sim-
ulation system and the message text as obtained by
applying OCR to the email message rendered by some
rendering engine.

It has to be pointed out that the methods proposed
in this paper take too much runtime to be employed
at an online policy enforcement point. Rather, they
should be employed at an offline analysis system. The
methods proposed in this paper enable the detection of
suspicious emails, but human intervention is necessary
to review the detected emails and perform necessary
updates to existing filtering software and the hidden
salting simulation system.

Specifically, this paper makes the following contribu-
tions:

1. We describe frequent types of hidden salting and
our automatic hidden salting simulation system,
which generates a simulated perceived email mes-
sage text.

2. We develop robust text comparison metrics that
allow us to compare the simulated perceived mes-
sage text to the true message text obtained by
applying OCR to the rendered email.

3. We use the distances computed with these met-
rics’ as features to train a classifier. An outlier
as detected by this classifier would be a candi-
date email for containing a new, unseen salting
trick. We automatically determine the threshold
of when to consider an email as outlier.

4. We perform experiments to simulate the detec-
tion of a new trick by disabling the detection of
a known trick. On publicly available email data
we are able to achieve good results for the tested
tricks.

This paper is organized as follows. In Section 2 we dis-
cuss related work. Section 3 summarizes our system
for automatic detection of hidden salting tricks. Sec-
tion 4 introduces robust metrics to compare the two
texts we extract from email messages. In Section 5
we describe the experimental setup of the outlier de-
tection classifier, the automatic classification thresh-
old detection, and evaluation measures. Our empirical
results are presented in Section 6, and Section 7 con-
cludes the paper.

2 Related Work

Current email filtering systems mainly rely on lexi-
cal and structured features extracted from the email
header or from the body of the texts. The features
extracted from the header are well-known (e.g., the
header fields title, from, to). The structured features
from the body are often suspicious domain names
of links (e.g., [8]). When unstructured contents of
the emails are considered, state-of-the-art tools rely
on character sequences (n-grams), the words of the
emails, or word tuples composed of two or more words
possibly separated by wildcards (e.g., [1]). But, the fil-
ters ignore features based on the layout of the emails,
syntactic structure, and semantic or topical classifica-
tions of the content. They completely neglect hidden
salting tricks, which accomplish that the filter consid-
ers different content from what the human user of the
email perceives. In addition, they ignore the dynamic
adaptation of the feature extraction methods to new
scams.

Fumera et al. exploit the textual information embed-
ded into images and detect willful obfuscations in im-
ages attached to emails [7]. Their contribution lies in
image processing and is complementary to our work.
Breuel et al. indicate possible solutions to phishing

and search engine spam based on analyzing the OCR
text of an HTML page instead of the HTML source
itself [3]. To the best of our knowledge they do not
provide an implementation or experimental results. In
their well-known work, Cavnar et al. demonstrate that
robust text classification in the presence of OCR er-
rors is possible when using n-gram-based features [4].
On the other hand, recent work by Taghva et al. em-
phasizes that OCR errors can have a negative impact
on text categorization [11].

3 Hidden Salting

Visible salting is commonly found in spam mails; its
hidden variant, where deliberately content is hidden
from the user, is more dangerous as it is difficult to
detect, although it misleads the content filtering. Hid-
den text salting can be applied to any medium, e.g.,
text, images, audio, and to any content genre, e.g.,
emails, Web pages or MMS messages, and is common
in fraudulent emails such as phishing mails that aim
to steal personal information from users in order to
commit identity theft.

We summarize here our approach for the detection of
hidden salting based on a hidden salting simulation
model. The details can be found in [2].

Given an email as input, a text production process,
e.g., a Web browser, creates a parsed, internal repre-
sentation of the email text and drives the rendering
of that representation onto some output medium, e.g.,
a browser window. Our proposed method takes place
during this rendering process, and is composed of two
steps:

1. We tap into the rendering process to detect hidden
content (i.e., manifestations of salting).

2. We feed the intercepted, visible text into a cog-
nitive hidden salting simulation model, which re-
turns the simulated perceived text.

During the first step, we intercept requests for draw-
ing text primitives, and build an internal representa-
tion of the characters that appear on the user screen.
This representation is a list of attributed glyphs (i.e.,
positioned shapes of individual characters, with ren-
dering attributes and any concealing shapes). Glyphs
are listed in their compositional order (i.e., the order
in which they are drawn according to the source text).
Then, we test for glyph visibility (i.e., which glyphs
are seen by the user) according to the following glyph
visibility conditions:

Clipping The glyph is drawn within the physical
bounds of the drawing clip.

Concealment The glyph is not concealed by other
glyphs or shapes.

Font Color The glyph’s fill color contrasts well with
the background color.

Glyph Size The glyph’s size and shape is sufficiently
large.

Failure to comply to any condition results in an invis-
ible glyph and is an indication of hidden salting. We
eliminate all invisible glyphs (i.e., retain only what is
expected to be perceived by the user).

In the second step, given the set of retained (visible)
glyphs, we define the order in which glyphs are most
likely read by humans, i.e., the reading order. We
cannot assume that the reading order equals the com-
positional order, since spammers are known to exploit
this (e.g., text can be coded in the source as columns
but actually read by humans in lines). Then, given
a set of visible, positioned glyphs covering a specific
area, e.g., an email or page, we use a cognitive model
of text perception to define the glyph reading order as
perceived by humans. The task of the cognitive model
is to find a coherent partitioning of the page, with
proper and coherent reading directions assigned to the
each partition. A reading order is detected based on
a layout characteristic where we expect that glyphs of
parallel lines are aligned. In addition, we measure the
compliance of the text with the language specific dis-
tributions of character n-grams, common words and
word lengths obtained from a reference corpus.

This model is, however, vulnerable for the appearance
of new salting tricks that make certain content invis-
ible, hence our focus is on the detection of such new
tricks in this paper.

4 Text Distance for Change Detection

Our hidden salting simulation system provides the sim-
ulated perceived message text when considering a fixed
set of salting tricks. Let us call this text the simulated
perceived text of an email. At the same time we ex-
tract a second text from the email by rendering it and
then putting the resulting image through an OCR en-
gine. Let us call this text the true message text of
an email. The reasoning would be that if these two
texts differ significantly then our hidden salting sim-
ulation system disregards some techniques that were
employed by the email author. Note that we discard
any external images from consideration for both texts.

Our goal now is to detect emails for which the simu-
lated perceived text and the true message text differ.
Many string distance techniques have been proposed

in the past, see [6] for a good overview. They generally
fall into two categories:

1. Edit-distance like measures: These measures usu-
ally add up penalties for editing operations that
transform one string into the other one. Examples
for these distance measures include the Leven-
shtein distance, the Monger-Elkan distance, and
the Jaro-Winkler distance.

2. Token-based measures: These measures relate the
tokens that appear in both strings to the to-
kens that appear in either string. Examples are
the Jaccard similarity, Tf-Idf, and the Jensen-
Shannon divergence.

Measures from both of these categories have drawbacks
in our scenario. Edit-distances take the order in the
texts into account. This is problematic in our set-
ting. Our hidden salting simulation system uses layout
analysis to identify text blocks and images in HTML
emails. OCR engines may or may not use similar tech-
niques, so that the message text may be produced in a
different order. Token-based measures take only exact
token matches into account, which is inappropriate as
OCR engines produce a significant amount of errors.

4.1 Three Measures for Change Detection

We propose three measures to compare the simulated
perceived text and the true message text of an email:

1. Length: The difference in normalized text
length. We normalize whitespaces and simply
calculate the difference between the two lengths.
This is simple and robust with respect to text or-
der changes and OCR errors.

2. TOC: The tolerant overlap coefficient, a combi-
nation of token-based and edit-distance like mea-
sures. We use an edit-distance to match tokens
with some degree of freedom, then use a token-
based measure for overall text distance.

3. Complexity: Difference of “information con-
tent”: The Kolmogorov complexity is a measure
of the computational resources needed to specify
the string. We use Lempel-Ziv compression for its
approximation.

In more detail, the tolerant overlap coefficient TOC is
calculated as follows:

1. Tokenize both texts, eliminate short tokens. In
our setting, we eliminate tokens consisting of less
than 4 characters.

2. Compute the number of tokens that appear in
both texts. A token xi appears in the other text,
if a token yj in the other text can be found, so
that the editing distance (Levenshtein) between
xi and yj is below some threshold θxi,yj

. In
our experiments, this threshold depends on the
token’s length and is at least 2, i.e., θxi,yj =
max(2, α max(|xi|, |yi|)), where α = 0.1. The pa-
rameter α defines the tolerance level relative to
the token’s length.

3. The similarity of the texts is the number of com-
mon tokens divided by the number of tokens in
the longer text.

For the third measure Complexity we rely on an in-
formation theoretic motivated approach. The moti-
vation behind is that the amount of information in
a string or the complexity of a string is robust with
respect to distortion. The introduction of noise does
not change the information contained within a string.
The Lempel-Ziv coding is a scheme for the universal
compression of data which can be used to describe the
complexity of a string in terms of contained informa-
tion [13]. It is basically the count of all contained iden-
tical sub-phrases in a string, which can be efficiently
computed [12]. Although developed for the compres-
sion this coding asymptotically approximates the en-
tropy rate of the unknown source of the string, which
can be used as a complexity measure.

Let c(s) denote the Lempel-Ziv coding count for a bi-
nary string s, then lc(s) = c(s) ∗ (log2(c(s) + 1) gives
the length of the compressed string. Let lu(s) de-
note the length of the uncompressed string s, then
r(s) = lc(s)/lu(s) gives the compression ratio for s.
For two strings s1 and s2 we can now define the
complexity-based distance measure as the relative dif-
ference of the two compression ratios:

|r(s1) − r(s2)|
max(r(s1), r(s2))

4.2 An Example

As an example consider the email depicted in Figure 1.
On the left you see the image of the rendered email and
on the right its HTML source. This email contains font
color tricks implemented by the two occurrences of
drywall. Figure 2
shows both the simulated perceived text as generated
by our hidden salting simulation system and the true
message text as the OCR text of the rendered email.
Note that the detection of font color tricks had been
disabled in the salting simulation, otherwise the two
occurrences of drywall would not appear in the sim-
ulated perceived text.

The example illustrates the following scenario. Sup-
pose we were unable to detect font color tricks in our
hidden salting simulation system. Then it is our goal
to mark this email as suspicious, because the two texts
differ significantly. Our features produce the following
values for this email: Length = −13, TOC = 0.875,
and Complexity = 0.026. The negative value for
Length is an indication that the simulated perceived
text contains more text than it should, i.e., that in
reality some characters are hidden by a trick not yet
covered.

5 Experimental Design and
Evaluation Criteria

In our experiments we simulate the detection of a new
salting trick by disabling the detection of one of the
tricks implemented in our salting simulation system.
As described in Section 3 the system can detect the
following tricks: font size trick, font color trick, con-
cealment, and clipping.

The simulated perceived text is generated by our hid-
den salting simulation system. We obtain the true
message text of an email by rendering it using stan-
dard Java rendering and then OCRing the rendered
email using the publicly available OCR engines gocr 1

and ocrad 2. For the latter tool we set the option -s
5 for scaling the image to obtain better results.

As a classifier, we train a one-class SVM [10]. The
setting is as follows. The training set contains only
emails, which do not contain the disabled trick. They
represent the “one class” of so far “normal” emails, i.e.,
emails that contain no or only known salting tricks.
The test set then contains both emails with and with-
out the disabled trick. The classifier marks emails
as outliers, which indicates that they are not in the
same class as all the emails from the training set. In
other words, these emails are “unnormal” or suspi-
cious, which indicates that they may contain a previ-
ously unseen salting trick.

In reality, the classifier produces some real-valued out-
put, where a large value indicates that an email be-
longs to the one class and a small value indicates that
an email is an outlier. Hence, we need a threshold
that lets us mark an email as outlier. It would be un-
desirable to fix this threshold manually as it can vary
for different tricks. Usually, classification parameters
are estimated using a separate validation set. In our
setting we do not have data labeled as outlier in ad-
vance. Thus, we need to apply the trained model to
the training set to estimate the threshold:

1http://jocr.sourceforge.net/
2http://www.gnu.org/software/ocrad/

<html>
<body>
drywall
<p>Your home refinance loan is approved!
</p>

<p>To get your approved amount
go here.</p>

<p>To be excluded from further notices
go here.</p>
drywall
</body>
1gate
</html>
5297gdqK6-498jyxl3033RafD3-195RTcz6485obQU9-615LOLg9l49

Figure 1: An example email together with its HTML source text

drywall
Your home refinance loan is approved!
To get your approved amount go here.
To be excluded from further notices go here.
drywall

Your _ome refinance loan is approve_!
To get your approve_ amount _o_o _ere.
To De exclu_e_ from furt_er notices __o _ere.

Figure 2: Simulated perceived and true message text for the example email

1. After training the classifier we apply the trained
classifier to all emails in the training set and
record the real-valued outputs it produces.

2. We calculate the inter-quartile range IQR of the
real valued outputs and subtract it from the first
quartile value Q1 to obtain the threshold θ: θ =
Q1 −βIRQ, where we set β = 2.0. A larger value
for β means that the cutting threshold will be
smaller, i.e., that fewer email messages will be
considered as outlier.

In our experiments a classification of true indicates
that the email is of the same type as the emails in
the training set whereas false indicates that the email
is an outlier and thus potentially contains a new hid-
den salting trick. For the evaluation we report the
false positive rate, the false negative rate and the F2-
measure with respect to the outlier class. The false
positive rate indicates how many outliers were missed
whereas the false negative rate indicates how many
regular emails were considered to be outliers. In our
scenario a false positive might be considered a more se-
vere error than a false negative. The F2-measure with
respect to the outlier class combines precision and re-
call of the outliers, i.e., the emails classified as false. In
accordance with the above observation the F2-measure
weights outlier recall twice as high as outlier precision.

For a more detailed analysis we also show the ROC
graphs. The ROC graph has the false positive rate
on the x-axis and the true positive rate on the y-axis.
One classifier only defines one point in this ROC space.
However, by considering all meaningful cutting thresh-
olds between the positive and the negative class we
obtain a set of classifiers and hence a complete graph.
The ROC graph illustrates that one can trade a lower
false positive rate for a higher false negative rate and

vice versa. An attractive property of ROC graphs is
that they are insensitive to changes in class distribu-
tion, i.e., to the proportion of positive and negative
examples.

6 Data and Empirical Results

To evaluate our system for detecting new salting tricks
we compile corpora from publicly available sources.
We use the SpamAssassin corpus and the phishing
email corpora compiled by Nazario as our primary
sources. SpamAssassin provides us with a total of 6951
ham messages and 2154 spam messages, and Nazario
provides us with a total of 4559 phishing messages
compiled during different time periods. Table 1 sum-
marizes our data together with a statistics about how
many email messages contain a certain salting trick
as detected by our hidden salting simulation system.
Note that the “Any trick”-row is not equal to the sum
of the others as some emails contain more than one
trick.

Ham Spam Phishing Total
Full corpus 6951 2154 4559 13664
Font color 6 91 430 527
Font size 40 376 954 1370
Clipping 0 0 1 1
Concealment 1 17 0 18
Any trick 43 422 1314 1779

Table 1: Summary of the available email data

For both the font size and the font color trick we cre-
ated a specific corpus in the following manner. For
training, we randomly selected 800 messages that do
not contain the respective trick. For testing, we ran-

domly selected 100 messages that do and 300 messages
that do not contain the respective trick. The random
selection did not take into account whether the emails
came from the ham, the spam, or the phishing sub-
corpus. Unfortunately, the other tricks appear not
frequently enough to design meaningful experiments
for their detection. Of course, it would be the ulti-
mate challenge to detect the one single new email that
would contain an unknown trick.

6.1 Feature Processing and Parameter
Settings

Our features produce values of a very different scale.
The Length-feature can, for outliers, easily have val-
ues in the hundreds or even thousands. On the other
hand, the TOC-feature is always between 0 and 1 as is
the Complexity-feature. Hence, we scale the values
of the Length-feature to the interval [−1, 1], where all
values above 1000 are transformed to 1 and all values
below -1000 to -1.

As one-class SVM implementation we use the libSVM
library [5]. We fix the parameters of the SVM to the
following setting: RBF kernel, ν = 0.5, γ = 0.1. We
fix the parameter of our automatic threshold detection
to β = 2.

6.2 Detection of the individual hidden
salting tricks

Table 2 shows the results we obtain for the detection
of two salting tricks, font color and font size.

Trick OCR FPR FNR F2
Font color gocr 7.53% 17.85% 84.15%
Font size gocr 9.18% 10.10% 87.08%
Font color ocrad 20.43% 11.41% 77.08%
Font size ocrad 30.61% 10.85% 69.11%

Table 2: Results for salting trick detection

The table suggests that we achieve better results using
the gocr engine than using the ocrad engine. Though
the evaluation in f-measure does not differ very much
we can observe significant differences in the false pos-
itive and the false negative rate. As we pointed out
earlier, the false positive rate is of particular impor-
tance. Figure 3 depicts ROC graphs for both tricks
and both OCR engines, and supports the claim that
the results for the gocr engine are better. Currently
we are setting up a commercial OCR engine, which
promises much better character recognition results.

Figure 3 also lets us reason about the optimal operat-
ing point and whether our automatic threshold detec-
tion comes close to finding it. If we consider the closest

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

Font color (gocr)
Font color (ocrad)

Font size (gocr)
Font size (ocrad)

Figure 3: ROC graphs for two tricks and two OCR
engines

point to (0,1) as the optimal operating point then we
can observe that for font color and gocr the optimal
operating point is at a false positive rate of about 9%
and a true positive rate of about 86% (which corre-
sponds to a false positive rate of about 14%). If we
compare that to the result as depicted in Table 2 then
we can observe that we come close to that point. For
the font size trick the optimal operating point is at a
false positive rate of about 9% and a true positive rate
of about 90%, and the result in Table 2 is indeed very
close to that point.

On the other hand, one can define the optimal operat-
ing point in a cost-based manner, i.e., in our scenario
by penalizing false positives higher than false nega-
tives. That would lead to larger values for θ or, equiv-
alently, smaller values for β as defined in Section 5.

When we look at the misclassified emails we can ob-
serve two things. False positives are typically messages
that contain very few tricks relative to the length of the
message text, i.e., very few characters are salted. This
is the price that we have to pay for the robustness of
our system. It is a small price though, because such an
email would then only contain very few salted “good
words” to confuse a traditional email filter. Second,
false negatives usually occur due to OCR errors. If the
OCR quality is too bad then our features will indicate
that the two compared texts are different. One par-
ticular observation here is that the OCR often misses
horizontal lines explicitely written out using the ’-’- or
the ’ ’-character in text emails.

Another potential source of errors comes from the cor-
relation of salting tricks. In some emails some text is
not only written in a tiny size but also with low color
visibility at the same time. That could lead to false
positives. For example, in our experiments the hidden
salting simulation system should miss the font color
trick for a character (if that detection is disabled) and
include it in the simulated perceived text, but fails
to do so, because it recognizes the font size trick for
the same character. Then the email that should be
an outlier is classified as true. It remains largely a
philosophical question whether that is a problem. In
the extreme case, if a new unknown salting trick cor-
relates 100% with an already known trick, we could
of course never detect it as such, but still the hidden
salting simulation system would always produce the
correct simulated perceived text. In our original cor-
pus of 13664 emails there are 123 emails that contain
both font color and font size tricks.

6.3 Results for the different distance
measures

In this subsection we look into the individual distance
metrics proposed in Section 4. Table 3 summarizes the
classification results for both salting tricks and each
individual distance metrics.

Trick Feature FPR FNR F2
Font color all 7.53% 17.85% 84.15%
Font color Length 10.75% 15.49% 82.83%
Font color TOC 6.45% 16.16% 85.80%
Font color Compl. 8.60% 10.77% 86.91%
Font size all 9.18% 10.10% 87.08%
Font size Length 48.98% 11.45% 52.52%
Font size TOC 11.22% 9.09% 85.97%
Font size Compl. 46.94% 5.72% 56.40%

Table 3: Results for salting trick detection

We can observe that the TOC-feature is clearly the
most useful one. For the font color trick the classifier
based on this feature alone even outperforms the clas-
sifier based on all features. On the other hand, the
Length and Complexity features are useful for the
font color trick detection but not at all useful for the
font size trick detection.

One could suspect a bad cutting threshold there, but
looking into more detail confirms the initial impres-
sion. Figures 5 and 4 depict the ROC graphs for the
font size and the font color tricks. They include the
graph based on all features as well as the graphs based
on each individual feature.

Again, the graphs clearly indicate that the TOC-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
T

ru
e

P
os

iti
ve

 R
at

e
False Positive Rate

All Features
Length

TOC
Complexity

Figure 4: Detailed ROC graph for font color trick

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

All Features
Length

TOC
Complexity

Figure 5: Detailed ROC graph for font size trick

feature that combines token-based and edit-distance
measures contributes most to the overall performance.

We looked again into the details and found that in-
deed for the font size trick the Length- and Com-
plexity-feature have larger values for the training set
data where in fact those values should be close to zero.
Hence, the trained classifier model is of a lower quality
in this case. Further analysis will be necessary here.

7 Conclusion

In this paper we presented a framework for detect-
ing both known and new salting tricks in email mes-
sages. Our previously developed hidden salting sim-
ulation system detects the presence of a number of
known tricks employed by spammers and generates a
simulated message text as perceived by the user. Here
we developed a robust mechanism to detect new tricks
not yet covered. To this end, we compare this simu-
lated perceived text to the true message text as ob-
tained by applying OCR to the rendered email and
feed features based on this comparison into an out-
lier detection classifier. In simulation experiments we
show that tricks can be detected with a high level of
accuracy.

There are a number of technical issues that could when
resolved further improve our system. First and fore-
most, a better OCR engine, such as the commercial
Abbyy Fine Reader engine, will most definitely be ben-
eficial. We also observed that different OCR engines
tend to make different kinds of mistakes systemati-
cally. For example, gocr tends to split tokens whereas
Tesseract 3 tends to merge them. Secondly, we em-
ploy some OCR preprocessing, such as binarization,
that could be improved further. Thirdly, segmenta-
tion and reading order are significant challenges both
for our salting detection system and the OCR of the
rendered email. Any breakthrough in these areas will
most certainly benefit our system.

8 Acknowledgments

This paper is based upon work performed
within the FP6-027600 project AntiPhish
(http://www.antiphishresearch.org/). The au-
thors would like to thank the European Commission
for partially funding the AntiPhish project as well as
all the AntiPhish project partners for their interest,
support, and collaboration in this initiative.

3http://code.google.com/p/tesseract-ocr/

References

[1] F. Assis, W. Yerazunis, C. Siefkes, and
S. Chhabra. Crm114 versus Mr. X: CRM114 notes
for the trec 2005 spam track. In Proceedings of the
Text Retrieval Conference (TREC), 2005.

[2] J. D. Beer and M.-F. Moens. Challenging hid-
den text salting in digital media. Submitted for
publication.

[3] T. M. Breuel and D. Keysers. Round-trip html
rendering and analysis for testing, indexing, and
security. In 7th IAPR Workshop on Document
Analysis Systems (DAS), Nelson, New Zealand,
February 2006. Extended abstract.

[4] W. B. Cavnar and J. M. Trenkle. N-gram-based
text categorization. In Proceedings of the Annual
Symposium on Document Analysis and Informa-
tion Retrieval (SDAIR), pages 161–175, Las Ve-
gas, US, 1994.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available
at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[6] W. W. Cohen, P. Ravikumar, and S. E. Fienberg.
A comparison of string distance metrics for name-
matching tasks. In Proceedings of the Workshop
on Information Integration on the Web (IIWeb),
pages 73–78, Acapulco, Mexico, August 2003.

[7] G. Fumera, I. Pillai, and F. Roli. Spam filtering
based on the analysis of text information embed-
ded into images. Journal of Machine Learning
Research, 7:2699–2720, 2006.

[8] E. Kirda and C. Krügel. Protecting users against
phishing attacks. Computer Journal, 49(5):554–
561, 2006.

[9] D. Lowd and C. Meek. Good word attacks on sta-
tistical spam filters. In Proceedings of the Confer-
ence on Email and Anti-Spam (CEAS), Stanford,
CA, USA, July 2005.

[10] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor,
A. J. Smola, and R. C. Williamson. Estimat-
ing the support of a high-dimensional distribu-
tion. Neural Computing, 13(7):1443–1471, 2001.

[11] K. Taghva, R. Beckley, and J. S. Coombs. The
effects of ocr error on the extraction of private in-
formation. In H. Bunke and A. L. Spitz, editors,
Document Analysis Systems, volume 3872 of Lec-
ture Notes in Computer Science, pages 348–357.
Springer, 2006.

[12] T. A. Welch. A technique for high-performance
data compression. Computer, 17(6):8–19, 1984.

[13] J. Ziv and A. Lempel. Compression of individual
sequences via variable-rate coding. IEEE Trans-
actions on Information Theory, 24(5):530–536,
1978.

