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Abstract. The state of the art sees content-based filters tending towards collaborative filters, whereby
email is filtered at the MTA with users feeding information back about false positives and negatives.
While this improves the ability of the filter to track concept drift in spam over time, such approaches
make assumptions implicit in centralised spam filtering, such as that all users consider the same email
to be spam. In this paper, we detail and analyse these assumptions and describe how they affect
spam filtering. We present an architecture for personalised, collaborative spam filtering and describe
the design and implementation of proof-of-concept, peer-to-peer, signature-based system based on the
architecture. The evaluation is based on real-world users employing the system as their spam-filtering
tool. Preliminary analysis of the results indicates that the implementation is accurate and efficient.

1 Introduction

In response to the growing volume and variety of spam, spam filters have moved away from monolithic
repositories situated on central servers towards dynamic knowledge bases located on local servers. The state
of the art in spam filtering sees content-based filters tending towards collaborative filters, whereby email is
filtered at the mail server using content-based techniques, with users feeding information back about false
positives and false negatives. This feedback enables the spam filter to track concept drift in spam and to be
retrained in the case of false positives.

While these filters can achieve statistically impressive accuracy rates, they remain prone to false positives,
i.e., the erroneous classification of a legitimate email as spam. Underlying the current generation of spam
filters are three implicit assumptions that, in our opinion, directly contribute to the presence of false positives.
To address these, we propose the concept of personalised, collaborative spam filtering.

This paper is organised as follows: Section 2 discusses current trends in spam filtering. Implicit in all of
these approaches are three assumptions, which are identified. Systems that advocate significant changes to
the mail transport layer are considered beyond the scope of this paper and are omitted. Section 3 explains how
personalised, collaborative spam filtering follows these trends and presents our architecture for personalised,
collaborative spam filtering. A P2P proof-of-concept implementation is described in Section 4 and evaluated
in Section 5. Section 6 briefly discusses related work. Section 7 presents our conclusions and outlines avenues
for future work.

2 Background

Content-based filters are founded on the premise that it is possible to create a set of rules, exemplars or
features that represent the “spamminess” of an email, and that if this is over some threshold, is considered to
be spam. Such filters have been the focus of considerable interest, with work on rule-based filters [11], nearest-
neighbour classifiers [16, 6], decision trees [3] and Bayesian classifiers [15, 1]. Initial implementations of these
filters were centralised, but with spam comprising 50% of all email traffic [12, 14] they were replicated at the
MTA level for performance reasons. As the knowledge base is now in the hands of the system administrators,
it can be customised to suit the characteristic email and spam that individual domains receive. Users can feed
information back about false positives and false negatives that enables the filter to be retrained. SpamAssassin
[11] is perhaps the most prominent example of this approach. Thus the monolithic content-based filters have
been developed towards a higher degree of collaboration as they have become decentralised.
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Similarly, collaborative filters have been developed in the direction of content-based filters. In a collab-
orative system, when a user classifies an email as spam, a signature is computed on the email and added
to the collective knowledge base. A signature is computed on every new email received and compared to
the database of known spam. If the signature matches one in the database, it is deemed spam. The algo-
rithm used to compute signatures here is key. If it is robust (i.e., ignores small randomisations in the text),
then it is more suitable. In order for algorithms to be more robust (or “fuzzy”), they have been developed
to be more content-aware so that unimportant discrepancies between emails do not change the signature.
There are a number of very successful collaborative filters today: Vipul’s Razor [13], Distributed Checksum
Clearinghouse [18] and SpamNet [4].

Characteristics-based filters operate on the assumption that some facets of an email are highly indicative
of spam. This is often done collaboratively. Characteristics on which emails are filtered include minimum
number of recipients [18], whether the originating domain is an open or compromised server [19, 2], a known
“spam-haven” [20], or a combination of several such factors [19, 9].

In our opinion, the assumptions listed below lead to reduced accuracy in centralised filters because emails
are filtered inconsistently across different users, according to whether they are of interest to the user. These
personalised views of what constitutes spam means that a centralised filter will cause false positives for users
whose opinions differ from the majority. The assumptions that are implicitly made by centralised filters are:

– All users classify email to be spam according to the accepted definition of UCE. Most
definitions assume UCE (Unsolicited Commercial Email) and spam to be synonymous. However, people
do not classify emails as spam objectively purely on whether they adhere to a definition, but rather
subjectively on whether the email is of interest to them.

– All users consider the same emails to be spam. Studies [8] show that people have their personal
views on what constitutes spam. It is noteworthy that some consider email to be spam even if they
have explicitly given the sender permission to contact them. This reflects some of the conundrums of
legislative debates on spam.

– All users are equally likely to receive the same spam. A given email address will not appear on
all spam lists and will therefore not receive all spam. By assuming that all spam messages are relevant
to all users, each email must be checked against every known spam for all users, and not just the subset
that a given user might receive. This can lead to suboptimal performance of the system.

3 The CASSANDRA Architecture

The Collaborative Anti-Spam System Allowing Node-Decentralised Research Algorithms (CASSANDRA)
architecture allows the construction of personalised, collaborative spam filters. In this section we introduce
the concept of personalised, collaborative spam filtering and present the CASSANDRA architecture.

3.1 Personalised, Collaborative Spam Filtering

Users receive spam because they are on mailing lists to which it is sent. Therefore, users need only be notified
of spam that is sent to the lists they are on. A personalised, collaborative filter is one that delivers the most
relevant spam notices to each user from the collection of all spam that is reported by members of the network.
Additionally, only the emails that the user considers to be spam should be marked as such.

In order for a personalised, collaborative filter to work, every time a new spam is classified, a signature
must be computed and propagated to those users most likely to receive a similar mail and to also consider it
spam. This requires that information is compiled and maintained for each user as to the groups and other users
it is similar to. The P2P architecture lends itself nicely to such a system, as there are unused resources situated
at the fringes of the network that can be used for spam filtering purposes. These resources — specifically
storage space, CPU cycles and highly accurate spam classifiers, in the form of users reading the email —
enable larger and more complex spam solutions to be built. This follows the pattern of decentralisation and
personalisation of spam filters. P2P systems can also provide better scalability, resilience and availability
than centralised systems, and these features can be leveraged by a personalised, collaborative spam filter.
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Fig. 1. Possible placements of filter.

Personalised, collaborative spam filtering has the benefit of being able to track concept drift in spam whilst
minimising the working set of spam stored by any one user. Similar users will cluster together on the adaptive
P2P network, reducing network traffic as relevant signatures are stored locally or nearby. The peers can be
implemented as one filter representing a single user or as one filter representing the aggregate of a number
of users. Some possibilities are shown in Fig. 1. A filter is comprised of several services to manage a peer’s
view of the network: Classifier Management Service (CMS); Algorithm Management Service (AMS); Peer
Management Service (PMS); Trust Management Service (TMS); and Group Management Service (GMS).

3.2 Topology and Decision Based Routing

Topologically, CASSANDRA is an adaptive P2P overlay network. Adaptive P2P networks allow for the
topology (i.e., the graph of connections between nodes) to change in response to the actions of the other
peers on the network. This is due to DBR (Decision Based Routing) being used in unstructured P2P overlay
networks, where any peer can decide to create or remove a connection between itself and any other peer.
Adaptivity yields three useful features. Firstly, an adaptive network allows a peer to locally decide which
other peers to whom it maintains connections. Hence, peers that receive similar emails and classify them
the same way can gravitate towards each other and cluster together. Secondly, DBR allows the peers in the
network to be heterogeneous in terms of decision making criteria, implementation and resources. Thirdly,
adaptive P2P topologies are resilient to failure and attack because it is extremely difficult for an attacker to
get a complete picture of the system at any given time.

3.3 Algorithms and Classifiers

Classifiers are used to identify email as spam. Examples of classifiers in a signature-based filter would be
signatures, whereas in a rule-based filter would be the rules themselves. As the filter is used, the CMS
maintains information about the most useful classifiers. A peer shares its best classifiers with other peers
to whom it has clustered. New classifiers are created in response to false positives/negatives and added to
the knowledge-base of a peer. The next time a peer shares classifiers, any new ones are sent to neighbouring
peers. Thus new classifiers are propagated through the network.

Classifiers are associated with the algorithms that created them. The only constraint on the classifiers
(and hence on the type of collaborative filter that can be implemented) is that they must be expressible
in XML. The AMS tracks and handles the algorithms that the peer uses. It is responsible for creating new
classifiers and ensuring that signatures are compared only to those generated by the same algorithm. In the



event that a peer does not know an algorithm with which a classifier was computed, the AMS can locate
and obtain the module for it.

3.4 Clustering and Collaboration

The PMS manages this peer’s view of the network. It maintains information about the peers in the network
to whom it is connected as well as those with whom it has had interactions in the past. The exact semantics
of what it means to cluster with other peers are not prescribed by the architecture, but left to individual
implementations. For instance, two peers might consider the amount of spam they have in common or
network locality to be dominant features when clustering. Malicious peers will get pushed out of clusters, as
the surrounding peers will detect that the peer is not acting similarly to them, and tend not to cluster with
them. Also noteworthy is the fact that connections between peers are unidirectional. This is due to DBR,
as two peers’ opinions of their shared relationship can be different (for example, a lazy peer would want to
cluster with active peers, but not vice versa). The TMS manages information pertaining to past interactions
with other peers, i.e., how much they are trusted to share good classifiers. The GMS manages this peer’s
view of which other peers are likely to be on the same spammers’ lists as it is.

3.5 Inter-Peer Communication

The CASSANDRA architecture does not prescribe the transport layer or the algorithms used when sending
messages. However, XML schemas are defined for the messages in order to ensure interoperability of peers.
There are three occasions upon which peers communicate with each other:

– Joining: In order to join the network, a node sends a Ping to a peer that is already in the network.
The extant peer replies with a Share message, which is a list of the best peers and classifiers from its
perspective. The extant peer then forwards the Ping to other peers, according to the algorithm used in
the system.

– Sharing: A Share message, containing information about classifiers and peers, is sent by a peer when it
determines it necessary. This can be after a fixed interval, at application start-up or shut-down, after a
new classifier has been created, or any combination of these. The recipients of a Share are those peers
whom the sending peer deems most likely to benefit from the new information.

– Revoking: Any peer can revoke any classifier at any time and sends a Revoke message when it does so.
This will typically be because the classifier has resulted in a false positive for the user. The recipients of
a revoke message can also choose to revoke the classifier or ignore it, based on past interactions with the
revoking peer.

4 Proof-of-Concept Implementation

The filter was implemented as a single-user filter that runs on a user’s computer in parallel to their normal
MUA, as per (b) in Fig. 1 above. It manipulates the user’s mail-store over IMAP using the JavaMail API.
The user does not interact directly with the filter. When the user is configuring the filter, he/she specifies
one folder on his mail store to be a spam folder. The user can identify false negatives simply by moving
emails into the spam folder and revoke false positives by moving them out of the spam folder, by using their
MUA as normal.

4.1 Filter Management

A custom header is added to emails to signify that the filter has classified them as spam or nonspam. The
filter operates by periodically checking the mail store to see if the number of emails in any of the folders has
changed. If so, the filter manager is run. Any emails that have no custom headers have signatures computed
on them, which are compared to the list of known spam. If there is a match, then the email is given a spam
header and moved to the spam folder. Otherwise it is given a nonspam header and delivered normally. All
emails that are in the spam folder and have nonspam headers are false negatives, and any emails that are
not in the spam folder and have spam headers are false positives, as shown in Fig. 2 below.
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Fig. 2. Email state diagram.

4.2 Algorithms and Classifiers

This system is signature-based and uses only one algorithm, called Approximate Text Addressing (ATA).
ATA generates a block text fingerprint on emails and has been shown to be a robust and accurate algorithm
[21]. A hit is when a signature computed on a new email matches a known signature. Each peer keeps a list
of the 1000 most recent signatures upon which it has had a hit, ordered by the time and date it last hit.
The email is tagged as spam, and the last hit time updated. Signatures are replaced using LRU replacement
when more than 1000 signatures are known.

4.3 Clustering and Collaboration

Each peer maintains a list of peers with whom it has interacted. For each peer, it maintains a value in the
range [0.0, 1.0] for both similarity and trust. Similarity is a measure of the UCE in common and trust a
measure of how likely the peer is to perform the same classification of the common email. These values are
modified on hits, misses and revokes. A miss is when a signature is replaced without having had a hit and a
revoke is when a signature is revoked by the peer or one of its neighbours. Peers are ranked by the product
of these values.

Upon hits, the value for similarity and trust are both increased by 10% of the amount it is less than
1.0 for peers that have recommended this signature to us. This enables peers to quickly build up a good
reputation for themselves. On misses, the value for similarity for the recommending peers is reduced by 10%
of its current value, as the signature was not relevant to the peer. On revokes, recommending peers lose 25%
of their current value for trust. This is quite drastic, but it ensures that peers that get the same UCE but
tag it differently do not cluster, as these are the peers most likely to cause false positives for each other.

4.4 Inter-Peer Communication

Peers communicate via XML messages over SMTP. SMTP was chosen because peers are easily identified by
their email addresses and SMTP enables asynchronous communication without loss of messages if a peer
is offline. It is also natural to assume that SMTP will be available, whereas other transport layers, such as
TCP may not be. To the authors’ knowledge, this is the only spam filter that utilises SMTP in this fashion.
Peers communicate according to the following rules:

– Joining: A node sends a Ping to a peer in the network, which relays it on to five peers it knows, with
a time-to-live of 3 hops. Every peer who receives the Ping sends a Share to the newcomer.

– Sharing: Every time a false negative is identified, a new signature is computed and added to the list. A
new share object, comprised of the most recent 10 signatures and top 5 peers, is sent to the top 5 peers
(i.e. the closest peers in the network).

– Revoking: Every time a false positive is identified, a Revoke is sent out with the offending signature to
the top 5 peers. Upon receiving a revoke, if the revoking peer is ranked higher than any peer that has
had a hit with that signature (including the receiving peer), then the recommendation is accepted and
the signature revoked.



5 Preliminary Results and Evaluation

Here we present preliminary results originating from a two week long case study of six people using the
implementation presented in Section 4 as their spam filter. The filter was used on a range of MUAs and
operating systems: Outlook 2003 on Windows XP Professional; Evolution 1.4 and Mozilla Thunderbird 0.5
on Fedora 1.0; and Mozilla 1.6 on Debian “Sid” (unstable).

Peer ID
Peer 1 Peer 2 Peer 3 Peer 4 Peer 5
Sim Tru Sim Tru Sim Tru Sim Tru Sim Tru

1 1.0 1.0 0.3439 0.3439 0.0 0.0 0.0 0.0 0.1 0.1
2 0.9938 0.9721 1.0 1.0 0.1 0.075 0.271 0.271 0.0 0.0
3 0.9953 0.9728 0.7175 0.5579 1.0 1.0 0.3439 0.3439 0.1 0.075
4 0.9953 0.9728 0.7456 0.5738 0.6513 0.489 1.0 1.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 1. Peers’ values for similarity and trust.

Peer ID Peers
Accepted Revoked
Signatures Signatures

1 6 13 2
2 6 13 2
3 6 12 3
4 6 13 1
5 6 11 1

Table 2. Peer’s knowledge of signatures
and other peers in the network.

Peer ID
Non-Protocol Emails Received Protocol Emails Received
Spam NonSpam Total Pings Shares Revokes Total

1 58 227 285 13 25 10 48
2 18 121 139 8 17 8 33
3 19 711 730 9 10 7 26
4 10 1959 1969 2 24 6 32
5 2 94 96 0 10 1 13

Table 3. Protocol and non-protocol email
received by each peer.

5.1 Clustering and Collaboration

Table 1 shows the values for similarity (Sim) and trust (Tru) that the peers have for each other. It is read
across to see how a node is ranked by its peers and down to see how a node ranks its peers. The table
shows that some peers are ranked highly by many peers and also that some peers have information about
many peers. This indicates that the clustering algorithm works. Early reporters (peers that report new spam
to the group) are the only ones who generate share messages. Therefore, information about these peers is
propagated through the network. “Freeloading” peers (those that have not contributed to the system whilst
benefiting from it) are ranked lowly, because they have not shared signatures. As the system grows, these
peers will be pushed to the edges of clusters. It can be seen from Table 2 that the freeloading peers know
similar numbers of peers and signatures to the other peers. Thus the information about the signatures flows
from regions of high to low activity in the network, showing the collaborative nature of the system. This may
lead to inactive peers being isolated in the network, as other peers do not have information about them. To
increase the flow of information from low activity regions, the sharing protocol can be extended to include
a reply Share message being sent when a peer receives a Share.

5.2 Accuracy and Scalability

Table 4 summarises the false positive and negative rate for each user. Accuracy is defined to be the percentage
of a user’s mail that is filtered correctly, i.e. as the user him/herself would filter it. As can be expected, the
false negative rate is highest for those peers that generated the most signatures. The figures in Table 4
describe moderately successful rates for false positives, negatives and overall accuracy.



Peer ID
False False Total % False % False

Accuracy
Negatives Positives Email Positives Negatives

1 16 3 285 1.05% 5.61% 93.33%
2 0 2 139 1.44% 0.00% 98.56%
3 1 3 730 0.41% 0.14% 99.45%
4 1 7 1969 0.36% 0.05% 99.59%
5 0 1 96 1.04% 0.00% 98.96%

Table 4. Accuracy of the filter for each peer.

A system is described as scalable if it will remain effective when there is a significant increase in the number
of resources and users [5]. In the context of our prototype, the number of protocol messages must remain
low, while the accuracy for each user must not decrease. Table 3 shows that peers receive approximately
similar numbers of protocol messages. Share messages are sent only when new unseen spam is received by
a peer. Therefore, as the knowledge bases at the peers are filled, less and less unseen spam will be received.
When there are no new mutations of spam being received, the protocol message overhead will be nil, save for
peers joining and leaving the network. Collaborative filters suffer from what is known as the “pump-priming”
problem. In other words, the effectiveness is low for small knowledge-base and number of users, but increases
dramatically as these values increase. Therefore, we expect (but have yet to test) that the effectiveness of
the proof-of-concept system will increase with scale.

5.3 Network Resilience and Security Analysis

The network was formed by nodes joining via randomly selected peers in the network. Table 1 shows that
all peers knew of the existence of each other. This means that from a fragmented beginning, the network
became more fully connected over time as the peers shared information about each other, displaying the
implementation’s resilience. The network is intended to have an adaptive topology as peers cluster towards
each other, yielding this self-healing characteristic.

SMTP is unauthenticated and hence the prototype system is susceptible to sender-spoofing, whereby a
malicious peer sends fake recommendations, purporting to be from another peer. Cryptographically strong
authentication can be achieved by using a decentralised authentication tool such as the Claim Tool Kit [17].
Such a system does sender entity recognition by the exchange of hashes of previous emails, ensuring that
sender-spoofing cannot work, unless a spammer has compromised the channel in a so-called “man-in-the-
middle” attack. Where there is a man-in-the-middle attack, it is localised to the channel that is compromised
(i.e. between two users, or on a mail-server). If we assume that hacking into a user’s machine/mail server is
difficult and resource consuming, it is unprofitable for an attacker to do widescale sender-spoofing.

The prototype is also susceptible to the Sybil attack [7], where one entity (a spammer, say) manifests
itself as many peers who collaborate to undermine the system. Such an attack is viable where the cost
of creating and using these identities is less than the benefit gained. The Claim Tool Kit protects against
widescale Sybil attack, because computing hashes on previous shared emails is computationally expensive,
as is creating signatures on the spam email that is to be put into the previously shared recommendations.

6 Related Work

SpamNet [4] claims to be a P2P spam filter, but is probably more accurately described as a centralised,
collaborative filter in the Napster architecture (signatures are stored centrally). To the authors’ knowledge,
the only other example of a decentralised spam filter is that presented in [21]. The system uses Approximate
Text Addressing, a variant of the block-text fingerprinting first introduced in [10], to compute signatures on
reported spam. The system is designed to overlay structured P2P topologies, where each peer manages a
subset of the key-space. Each signature corresponds to a location in the key-space. When an email is received,
a signature is computed and the peer who manages the key-space that it maps to is queried to determine
whether the email is spam or not. This works well for a LAN-sized network, but has the drawback that every



user generates network traffic for every email they receive. It is possible that the network, or parts of it,
can become congested if too many emails are received at once, or if many peers receive the same mass-mail
(spam or not) and concurrently poll the node to which the signature routes. This is true for any structured
P2P system, as they all use Key Based Routing (KBR).

7 Conclusions and Future Work

We have presented the concept of personalised, collaborative spam filtering. The CASSANDRA architec-
ture for personalised, collaborative spam filtering was detailed, along with a proof-of-concept, peer-to-peer,
signature-based implementation. The case study presented above shows that for a small system starting
from an empty knowledge base using quite simplistic clustering and trust processes, moderately successful
false positive and negative rates can be achieved. We are currently working on deploying the spam filter in
a long running case study with a larger set of users and expect improved performance and effectiveness, due
to the economies of scale and once the “pump-priming” problem (as discussed above) is overcome. Other
interesting avenues for future work include implementing different filters, such as collaborative rule-based or
case-based filters and the development of more sophisticated clustering methods.
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