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Abstract:

We describe methods for automatically identifyirggnature blocks and reply lines in plain-text
email messages. This analysis has many potent@icagions, such as preprocessing email for
text-to-speech systems; anonymization of emailozarpmproving automatic content-based mail
classifiers; and email threading. Our method isdzhsn applying machine learning methods to a
sequential representation of an email message hislweach email is represented as a sequence
of lines, and each line is represented as a sdeatures. We compare several state-of-the-art
sequential and non-sequential machine learning itigans on different feature sets, and present
experimental results showing that the presencesifimature block in a message can be detected
with accuracy higher than 97%; that signature bldidkes can be identified with accuracy higher
than 99%; and that signature block and reply lineen be simultaneously identified with
accuracy of higher than 98%.

1. Introduction

The growing importance of email as a communicatioedium have inspired many attempts to develop
intelligent tools for classifying, organizing, apdesenting email messages (e.qg., [1], [12], [1B)r. many of these
tools, it is useful to be able to analyze the boflgn email message by splitting it into components

In this paper we present a method for componergtlanalysis of plain-text email messages, and tuse i
identify two important types of components: gignature blockand thereply linesof messages. Identification of
these components has many potential applicatioefjding preprocessing email for text-to-speechesys [16];
automatic formation of personal address lists; @mahymization of email corpora. Our own interestrst from the
need to preprocess email messages in order tofglassail according to “speech acts” [3].

Component-level analysis of email bodies is difficgince the language used in email tends to bersi,
informal, and (particularly for signature blocksfem even creative. We use supervised learnindnoaist on a
corpus of annotated messages to develop compomit-hnalysis tools. We first consider tHetection of
signature blocks—that is, determining if an emailtains a signature. We then consider identifyirggabtual lines
of an email which comprise the signature block. fhis task, we represent every email message aquesce of
lines, with each line represented by a set of featUFinally we extend the signature block linentdecation method
to identifyreply lines—i.e., lines quoted from an earlier message in aaildhread. For each of these subtasks, we
show that high levels of accuracy (in the high P@an be obtained.

In our experiments we compare several learningriigos, including some recently-developedquential
learning techniques such as Conditional Random Fields Ri¥<J10], Conditional Markov Models, or CMMs [11]
[9], and a method for discriminatively training dieh Markov Models (HMMs) using voted perceptroris These
are compared to their non-sequential analogs, dsawether well-studied non-sequential learnexhsas boosted
decision trees [14] and Naive Bayes. Thus anothetribution of the paper is a rigorous comparaévaluation of
these methods on two real-world problems.



2. Problem Definition and Corpus

A signature blocks the set of lines, usually in the end of a mgssthat contain information about the sender,
such as personal name, affiliation, postal addrmesb, address, email address, telephone humbeQettes from
famous persons and creative ASCII drawings arengitesent in this block also. An example cfignature block
can be seen in last six lines of the email mespagjered in Figure 1 (marked with the line labeigzy. Figure 1
also contains six lines of text that were quotesnfia preceding message (marked with the line lategily>). In
this paper we will call such lineeply lines.

<other> From: wcohen@cs.cmu.edu

<other> To: Vitor Carvalho <vitor@cs.cmu.edu>

<other> Subject: Re: Did you try to compile javadoc recently?

<other> Date: 25 Mar 2004 12:05:51 -0500

<other>

<other> Try cvs update —dP, this removes files & directories that have been
<other> deleted from cvs.

<other> -W

<other>

<reply> On Wed, 2004-03-24 at 19:58, Vitor Carvalho wrote:

<reply> > I've just checked-out the baseline m3 code and

<reply> > "Ant dist" is working fine, but "ant javadoc" is not.

<reply> > Thanks

<reply> > Vitor

<other>
<sig>
<sig> William W. Cohen “ Would you drive a mime
<sig> wcohen@cs.cmu.edu nuts if you played a
<sig> http://www.wcohen.com blank audio tape

<sig> Associate Research Professor full blast?”

<sig> CALD, Carnegie-Mellon University - S. Wright

Figure 1 - Excerpt from alabeled email message

Below we first consider the task détectingsignature blocks—that is, classifying message® ashether or
not they contain a signature block. We next consiimature lineextraction This is the task of classifying lines
within a message as to whether or not they belorey dignature block. In our experiments, we perfgignature
line extraction only on messages which are knoweotdain a signature block.

To obtain a corpus of messages for signature hietéction, we began with messages from the 20 Newpg
dataset (Lang, 1995). We began by separating tissages into two grougsandN, using the following heuristic.
We first looked for pairs of messages from the sasrmaer and whose last T lines were identical. Wak larger
than or equal to 6, then one of the messages fnignsender (randomly chosen) was placed in g@yphich
contains messages likely to have a signature hlotk] was less than or equal to 1, a sample nges§am this
sender was placed in grodh These groups were supplemented with messages duwnpersonal inboxes (to
provide a sample of more recent emails) and maneakcked for correctness. This resulted in a fea of 617
messages (all from different senders) containisgaature block, and a set of 586 messages natdpavsignature
block.

For the extraction experiments, the 617-messagesefatvas manually annotated for signatimes. It was also
annotated foreply lines (as in Figure 1). As noted above, the idieation of reply lines can be helpful in tasks
such as email threading, and certain types of ovftesed message classification; and as we willotstrate
below, our signature line extraction techniques @ian be successfully applied to identifying relaies. The final
dataset has 33,013 lines. Of these, 3,321 linem aignature blocks, and 5,587 are rdpigs.



3. Signature Block Detection

In signature block detection, an email messagegeesented by a set of features, and a classflearned over
this feature space. The features we used foraterton problem are summarized in Table 1. Edcthasefeature
patternsis applied to each one of the last K lines of ¢h@ail message; for instance, one feature genebgtdlde
second pattern of the table might be “a URL appiatise 3-rd from last line”. All regular express#follow Java
syntax.

Feature Pattern

Line contains email pattern

Line contains URL pattern

Line contains phone number pattern

Line matches the regular expression ""\s]*---*{§)]

Line has a sequence of 10 or more special chasaetein the following regular expression:

AT AN NN DS | MIVINeNRIN=]{10,}s]*$"

Line contains any these typical signature wordept|University|Corp\.|Corporations?|College|Alkeboratory|[D|d]isclaimer|
Division|Professor|Laboratories|Institutes?|SeslEegineering|Director|Sciences?| Address|MandgeetfSt\.|[Avenue"

Line contains a pattern like Vitor R. Carvalho oilll&#m W. Cohen, as in regular expression: "[A-ZB\s\s?[A-Z][\.]?\s\s?[A-Z][a-z]+"

Line ends with quote symbol, as in regular expossi\"$"

Line contains the name of the message sender, Barra Both (If it can be extracted from the messagader)

The number of leading tabs in the line (as in regaekpression “\t") equals 1

The number of leading tabs equals 2

The number of leading tabs is equal or greater ghan

Percentage of punctuation symbols (as in regularession “\p{Punct}”) in the line is larger than 20

Percentage of punctuation symbols in the linerigdathan 50%

Percentage of punctuation symbols in the linerigdathan 90%

Table 1 - Features Used in the Signature Block Detection Task

Since feature patterns are applied to each ofasieK lines of the email message, the total nurolbéeatures
representing a message grows with K; for instaifidke URL pattern feature is found in each of k&t 3 lines of a
message, three different features will be pregetite representation of the email. Restricting éhfesitures to the
last K lines is thus a type of feature selectiamges signature blocks are generally in the lastlfeas of a message.

The signature block detection problem was then aeduo a binary classification problem using thevab
features. Using a 5-fold cross-validation procecareghe 1,203 labeled messages, we obtained thksre$ Table
2. Here F1 is the harmonic precision-recall meafindd as (2xPrecisionxRecall)/(Recall+Precision).

K=5 K=10 K=15

Learning Algorithm

F1 | Precision| Recall F1 | Precision| Recall F1 | Precision| Recall
Naive Bayes 89.67 81.81 99.18 8731 77.58 99.83 83.49 71.66 100
Maximum Entropy 95.11 97.28 93.0B 97.40  97.5p 97|24 96.98 97|54 96.43
SVM 94.87 96.79 93.03 | 9755 | 98.03 97.08 9739 | 97.87 96.92
VotedPerceptron 9519 | 97.45 93.03 96.34 97.35 95.46 95,69  96.22 94.97
AdaBoost 95.16 96.19 94.1§ | 96.76 96.45 97.08 | 96.56 97.36 95.78

Table 2 - Detecting Signaturesin Emails: Results

The implementation of the classifiers in Table Zwased on the Minorthird java toolkit [2]. SVMtie support
vector machine algorithm with a linear kernel [8hted Perceptron is the algorithm described inff@jned using a
single pass through the data. AdaBoost is an impheation of the confidence-rated boosting methatideed in
[14], in which a weak learner (in our case, a déptlecision tree) is boosted 10 times. Maximum é&pr(a.k.a.
logistic regression) uses limited-memory quasi-Newdptimization [15] and a Gaussian prior.

Overall, the best results of detection (F1=97.58)faund by using SVM and K=10, i.e., only the |&8tlines of
the message. However, all classifiers other thaiveNBayes perform well. Most of the mistakes ocedrin



signature blocks containing either only an ASCHwiing, only the nickname of the sender, or onlywa fluoted
sentences.

For all classifiers (other than Naive Bayes), thstlperformances were reached with K=10, and fdrS<there
is a slight decrease in performance. Interestinglg] also observed that “SIG fields are rarelygenthan ten
lines”.

4. SignatureLineExtraction

For the task of extracting signature block lines,nepresented each email document not as a seatofrés, but
as a sequence of lines. Each line is labeled afhéther or not it is part of a signature block, amgresented as a set
of features, similar to the features described abdhhis approach thus reduces the signature Xmacation problem
to a sequential classification problem. Sequentadsification problems can be addressed withesgéal learning
methods (like HMMs or CRFs) or else the orderinglaf lines can be ignored, and conventional nonesatipl
learning methods can be applied. We also obsemptbivements on this task by representing lineonbyt with its
own features, but also with the features derivethfneighboring lines.

The complete list of features used in this extoacproblem can be seen in Table 4. The first coloimfable 4
describes the features, and the next 3 columnsqtorent line”, “on previous line” and “on next &f), indicate to
which lines it should be applied. For instancegider to represent line number 25 of an email ngEssa a set of
features, thaBlank Linefeature is checked not only in line 25, but alsdime 24 and 26. In a message in which
these 3 lines are indeed blank lines, the reprasentof line number 25 will contain the followirg) features:
blankLine prevBlankLineandnextBlankLine

Many of these features are “overlapping” or norejmehdent. We also note that some of the featurssided
in Table 4 were originally created to extragply lines (e.g., the typical reply marker); howevéey proved to be
useful for signature line extraction as well.

Results using the features from Table 4 are showfable 3. They were obtained using 5-fold crodedation
on the previously mentioned set of 617 labeled agess (The cross-validation process was constraiodidat lines
from the same message were never split betweearingaand test sets.) Of the 33,013 lines, 3,321sayeature
block lines.

Learning Without Featuresfrom Previous With Featuresfrom Previous
Algorithm and Next Lines and Next Lines
Accuracy (%) F1 | Precisioh Recdll Accuracy () FL  PRiedi| Recall
Non-Sequential
Naive Bayes 94.13 73.88 66.80 82.65 91.03 68.60 52]95 97.38
Maximum Entropy 96.26 80.16 86.07 75.00 99.11 95.56 96.88 94.76
SVM 96.41 80.39 89.41 73.02 99.12 95.62 96.10 95.15
VotedPerceptron 96.10 80.43 81.84 78.65 98.96 94.73 96|32 93.19
AdaBoost 96.53 82.12 85.44 79.04 99.11 95.5b 96.21 94.91
Sequential
CPerceptron(5, 25 97.01 83.62 93.02 75{94 99.37 96.82 98.20 95.48
CMM(MaxEnt, 5) 87.11 57.24 42.94 85.84 98.65 93|58 89.99 97.47
CRF 98.13 90.97 88.05 94.09 99.17 95.97 94.27 97.74

Table 3 - Signature Line Extraction: Results

The non-sequential learners are the same uselldatetection problem in Section 3. The sequerdahlers are
based on the implementations available in Minodthj2]. The CMM(MaxEnt, 5) sequential learner is an
implementation of the Maximum Entropy Markov Modpl®posed by McCallurat al [11], having each example
of the Maximum Entropy base learner extended with predicted classes of the previous 5 lines. Hsé |
algorithm, CRF, is an implementation of ConditioR&Endom Fields [10]. As in our implementation abdmum
entropy, limited-memory quasi-Newton optimizatiodaGaussian priors were used.



CPerceptron(5,n) is an implementation of the HMMrféng algorithm proposed by Collins [5], also wih
history of 5 previous classifications. The “n” valis the number of passes over the training datawbre made. In
order to determine the optimum value for “n”, weedia development set with approximately 10% ofdhginal
dataset size and searched for the best “n” valtedss 1 and 40. For the signature block datasetbést number
of iterations was found to be 25. For the probl@mSection 5 and 6, the best “n” values were fotmte 18 and
38, respectively.

Line Features Description On On On
current previous | next
line line line

Blank line X X X
Email pattern X X X
Last Line X

Previous to last Line X

Email Header pattern X

Email pattern X X X
URL pattern X X X
Phone number pattern X

This signature marker regular expression: "\sjf\s]*$" X X X
A line with a sequence of 10 or more special chtaracas in the following regular expression: | X X X
“ANSFOTFNMINTI-IM~NNSNNNSTL] MIVIRNNIN=1{10,H\s[*$"

The presence of any these typical signature wdbegt\.|University|Corp\.|Corporations?| X X X
College|Ave\.|Laboratory|[D|d]isclaimer|Divisiomessor|Laboratories|Institutes?|Services|
Engineering|Director|Sciences?| Address|Manageefpst\.|Avenue"

Names patterns like Vitor R. Carvalho or William B@bhen, as in regular expression: X
"[A-Z][a-z]+\s\s?[A-Z][\.]?\s\s?[A-Z][a-z]+"

Lines ending with quote symbol, as in regular egpien: "\"$" X

The Name of the email sender, Surname, or Both ¢n be extracted from the email header) X

The number of tabs (as in regular expression &gjals 1 X X X
The number of tabs equals 2 X X X
The number of tabs is equal or greater than 3 X X X
Percentage of punctuation symbols (as in regularession “\p{Punct}") is larger than 20% X X X
Percentage of punctuation symbols in a line isdatijan 50% X X X
Percentage of punctuation symbols in a line isdatigan 90% X X X
Typical reply marker (as in regular expression "M> X X X
Line starts with a punctuation symbol X X X
Next line begins with same punctuation symbol asetu line X

Previous line begins with same punctuation symbdaarent line X

Line starts with 1 or 2 punctuation symbols, whéch followed by the typical reply marker, as in X X X
regular expression: "\p{Punct}{1,2}\>"

Reply line clue line endings, as in regular expmss' wrote:$" or " writes:$", X X X
Percentage of letters or numbers (as in regularesgpn “\[a-zA-Z0-9]") is smaller than 90% X X X
Percentage of letters or numbers in a line is @ndilan 50% X X X
Percentage of letters or numbers in a line is @ntilan 10% X X X

Table4 - Complete List of Featuresused for Line Extraction

For the non-sequential learners, the featuresehttighboring lines (henceforttindow featuresgive a huge
improvement in performance: the best F1 scores @rom 82.12 without windoveatures (for AdaBoost) to 95.62
(for SVM). The sequential learners also beneéitfrthe windowfeatures, but by a smaller margin. CRF performs
best (F1=90.97) when window features are not umed CPerceptron performs best when window featnesised
(F1=96.82).

In general, the sequential learners perform bélin the non-sequential ones. For this task, CRiy ifar the
best method without the window features. With thedew features, CPerceptron(5,25) is the best pado (and
also the best overall, with the impressive accurd@9.37%); however, CRF is a close second.

It is interesting to note that, on this problene tifeature engineering” step of adding windéeatures affects
performance far more the adoption of sequentiankra. When the window featwrare used, the difference in
performance between the sequential and non-sequksainers is fairly small.



5. Reply Line Extraction

The learning methods above can be applied to dyipexs of email body analysis. We considered ascansk
task the goal of identifying reply lines in an endihe same representation of email messages wab—+Es a
sequence of lines, each of which is a set of featttand the same set of features (described in #ablas used to
describe each line. Once again, this leads to @esgigl binary classification problem.

The results shown in Table 5 were again obtaineédguS-fold cross-validation on the labeled set 47 6
messages. Of the 33,013 lines, a total of 5,587eglg lines.

Learning Algorithm Without Featuresfrom Previous With Features from Previous
and Next Lines and Next Lines
Accuracy (%) | F1 | Precisioh Recall Accuracy (o) FI  mieci| Recall

Non-Sequential
Starts with “>" 95.10 83.08 99.92 71.09 n/a
Naive Bayes 97.97 93.98 94.47 93.50 93.86 84.37 74)03 98.06
MaximumEntropy 98.23 94.5¢ 98.11 91.28 98.74 96.22 97.p4 91.84
SVM 98.32 94.90 97.96 92.08 98.83 96.52 97.25 95.81
VotedPerceptron 98.19 94.38 99.19 90.03 98.48 95.36 98,90 92.07
AdaBoost 98.46 95.33 97.77 93.00 98.73 96.20 96.72 95.68

Sequential
CPerceptron(5, 18) 98.05 94.19 95.32 93|09 98.73 96.20 97.62 D4.82
CMM(MaxEnt,5) 97.71 93.13 94.77 91.56 98.78 96|33 97.85 94.86
CRF 98.10 94.31 95.55 93.10 99.04 97.15 98.17 96.15

Table5 - Reply Lines Extraction: Results

This problem would seem to be easier than extrgatignature lines. This is confirmed by the fadttthe
simple baseline of simply looking for lines tharstwith an angle bracket (“>") performs well (F13-88). There is
a benefit in using the window features, but theefieis much less than for signature line extrattimterestingly,
when the window features amot utilized, all non-sequential learners (with theception of Naive Bayes)
outperform the corresponding sequential ones.

For the reply lines identification task, CRF wa® tmost successful algorithm overall. Using the wind
features, it could correctly predict more than 98Rthe 33,013 lines.

6. Multi-ClassLine ldentification

In a final experiment, we considered the task dfaeting from an email both reply lines and signatblock
lines. We treated this as a multi-class sequenlisification problem, in which each line is giveme of three
labels:signature, replypr other.We again used the features of Table 4.

The results shown in Table 6 were obtained by uSifigild cross-validation on the set of 617 manukdlyeled
messages. The performance is measured by accuwracwylblines, and we also give for each learnep@afusion-
matrix (where rows indicate the true class, andcttiamns indicate the class predicted by the legraigorithm).
All confusion-matrix entries are percentages oftthial set of lines.



Multi-class Without Featuresfrom Previous With Featuresfrom Previous
Sequential and Next Lines and Next Lines
Learning Accuracy Accuracy
Algorithm (%) Confusion-Matrix (%) Confusion-Matrix
% Sig Reply | Other % Sig Reply | Other
CPerceptron(5, 38) 95.35 Sig 8.27 0.17 1.61 98.91 Sig 9.85 0.06 0.15
Reply 0.05| 15.22 1.65 Reply 0.14| 16.39 0.38
Other 0.37 0.78 7185 Other 0.09 0.26 72.65
06.71 % _ Sig Reply | Other 08.48 % Sig Reply | Other
CRF Sig | 942 0.03 0.61 Sig 9.85 0.05 0.16
Reply | 0.04| 1587 1.00 Reply | 0.06] 1632 | 054
Other 1.36 0.24 7141 Other 0.51 0.200 72.30

Table 6 - Resultsfor Simultaneous Sighatur e Block and Reply Lines Extraction

Once again, all learning methods benefit from tledew features, specially the CPerceptron. The Gipdron
algorithm outperforms CRF when the window featwses used, reaching an accuracy (or percentageradctiy
labeled lines) of 98.91%. CRF is the best learreemno window features are used, correctly lab&iBig 1% of all
lines.

7. Conclusions

In this work we addressed the problem of identdycomponents within the body of an email, spedifica
signature blocksandreply lines We first considered attempting to detect whetlierot an email message contained
a signature block. We developed a set of linguaditidnspired features, which when applied to thst 110 lines of
the email messages are highly informative: expertmaith several learning algorithms produced higidcurate
classifiers, with F1 measures above 97.5%.

We then considered the task of extracting the fipdiries of an email that comprised a signatui@. this “line
extraction” problem, a message was representegaguence of lines, with each line representedsas af features
collected not only from the current line, but afsam the previous and next lines. The additionhese “window
features” proved to boost the extraction performeaconsiderably. In experiments with sequential awot-
sequential learning algorithms, high accuracy (&®®%) and F1 measures (nearly 97%) were achiekedthis
problem, the choice of learning algorithm and featset is much more important: for example, withairidow
features, the best non-sequential learner obtaislaneasure of only 82.1%.

We also used the same methods to extreygly lines of email messages, again obtaining accunaegsures
above 99%. Finally, we used multi-class sequegiaining techniques to extract both reply and digneablock
lines simultaneously. Again very good results waghkieved, with accuracy of 98.91% for the task.

In prior work using machine learning algorithms @hiferent line-classification tasks, [13] studiae problem
of identifying lines of tables, and [11] presensults on extracting lines of “frequently asked dises” (FAQ)
documents. From the prospective of machine legrrésearch, our experiments provide an additiooalparative
study of sequential learning methods, appliednew set of line-classification problems.

In prior work on email body analysis, [4] descrilEesethod to parse signature block fields in emma@ssages
using a combination of two-dimensional structuragreentation and one-dimensional grammatical cansdra
integrated with weighted finite-state transducekssimilar combination of layout and linguistic imfoation was
also used by Hurdt al.[7] to analyze general tabular data). [4] repor&3&b6 recall rate and a 90% precision rate
for identifying signature blocks among all blocksda message, given that the blocks were previcesharated.
These results cannot be directly compared with,agsve consider line classification, and not bloiektification.
We also do not use any features based on the fagfdlie email messages.

As a practical matter, our method is likely to becim more easily reproduced than that of [4]particular, we
have presented a highly accurate analysis technichieh relies only on a set of easy-to-implemerdtdees,
computed on individual lines of an email, which ae completely described in this paper. Usingeteatures,



the best performance is usually obtained with drtevo sequential learning methods—CRFs [10] or €Bptron, a
method of discriminatively training HMMs with Votdeélerceptrons due to Collins [5]. Of these two rodth we
note that CPerceptron has the virtue of being ceatey to implement. We also note that with the fesgure sets
described, very good performance can also be autairith widely available non-sequential learningmoels.
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