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Abstract. In this paper, we experiment with support vector machines and random forests, two of the
state-of-the-art classification algorithms, for spam detection. We use public and private email corpora
from a wide community of internet users collected over several years for our comparative studies. In
our empirical studies, we emphasize the importance of feature engineering and the effective handling
of the dynamic nature of spam emails by using small sets of highly skewed time-indexed data.

1 Introduction

Over the past several years both the open source and commercial software communities have responded
with a host of solutions for the email spam problem. Much of the discussion of spam detection is focused on
building filters for individual end users rather than the larger commercial problem of blocking spam for users
within organizations. For individual filters people often talk about false positive (FP) rates of two to three
percent. However, for a commercial system with tens or hundreds of thousands of mailboxes false positive
rates over one percent would result in thousands of distressed users. Typically, a large organizational email
system is usually administered by a few engineers who simply cannot handle large volumes of support calls.

Due to low accuracy of the spam classification systems we see two basic strategies to protecting orga-
nizations: ultra conservative strategies marked by low effectiveness and very low FP rates; and moderately
effective ones with uncertain or unmonitored FP rates but some limited form of “tunability”. The first ap-
proach often employs signatures or message hashing databases that recognize prior spam messages and block
those while leaving all other messages untouched. With the explosion of spam volume and sophistication
over the past two years the conservative, or reactive strategies have seen drastic drops in effectiveness. The
most popular example of the second approach is the well known open source solution called SpamAssassin
[1] which provides facilities for training, blocklisting and safelisting mechanisms, and rule extensibility. Spa-
mAssassin has a great deal of support, however it is also widely known to require a tremendous amount of
email administrator maintenance efforts.

Widespread attempts to remedy the issues facing spam detection for organizations resulted in introduction
of machine learning methodologies to the practice of spam detection. In August of 2002 a well known anti-
spam personality named Paul Graham demonstrated the application of Naive Bayesian classification to the
spam problem [2]. In the machine learning community the application of Naive Bayes to spam classification
was explored in detail several years earlier in [3]. Nevertheless, Graham’s introduction has spawned a host
of Naive Bayes related products and the introduction of this technology into many preexisting solutions.
However, the myriad shortcomings of using Naive Bayes have been highlighted in the popular technology
press in a storm of articles and talks most notably by Paul Graham himself. Part of the issue is certainly
due to the severe violations of conditional independence found in commonly available feature sets.?

The question seems to be which machine learning technique will replace Naive Bayes as the workhorse of
spam classification. In this paper, we carefully explore and contrast the properties of two of the state of the
art machine learning techniques: support vector machines and random forests. To provide context within the
still widespread application of Naive Bayes we conduct our comparisons against this technique as well. The

3 SpamAssassin generates examples of fully dependent features such as HTML_MESSAGE and HTML_60_70 where
HTML_60_70 can only fire if HTML_MESSAGE fires, etc.



emphasis of our paper is to treat spam classification as a dynamic process with drifting and time-varying
characteristics rather than as a static text classification problem which seems to be the approach taken by
much of the previous research. We also point out the challenges posed by the skewed nature of the spam
distribution.

2 The Support Vector Classifier

Support vector machine (SVM) has become very popular in the machine learning and data mining community
due to its good generalization performance and its ability to handle high-dimensional data through the use of
kernels. Consider a set of training data points T' = {(z1,v1), .- ., (zn,yn)} where z; € R™ and y; € {+1,—1}.
SVM seeks to find a hyperplane

{z |wlz +b=0}

that generates the largest margin between the data points in the positive class and those in the negative
class. It can be shown that this can be achieved through the following minimization problem [8],
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where &; is the so-called slack variable, that allows misclassification to happen, and C' is a parameter that
balances the amount of misclassification and the size of the margin. The above minimization problem is
usually solved through its dual formulation
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where we have replaced the dot-product in R™ by a general kernel function K. The decision function is given
by

N
f(z) = sign (Z yio; K(x,2;) + b) .

SVM with linear kernels has proven to be quite successful for tasks such as document classification where one
needs to handle many features (words or phrases) and it is also the type of kernel we use in our experiments
[5]. Since we treat spam detection as a binary classification problem, there is no need to explore some of the
ad-hoc ways of generating a multi-class classifier from a set of binary classifiers. We used SVM Light for our
experiment, and the parameters were chosen so as to maximize the estimated performance [6, 7).

3 Random Forests

Random forests grow many classification trees {h(z,©y)} where each tree in the forest depends on the value
of some random vector @. For each step k, O is chosen independent of ©1,...,0,_1. To classify a new
data point with a given feature vector, put the feature vector down each of the trees in the forest. Each tree
gives a classification, and we say the tree votes for that class. The forest chooses the classification having the



most votes (over all the trees in the forest). Many versions of random forests exist depending on how O is
generated, examples include bagging and random split selection [4]. We used a version described in [4] based
on random selection of features at each node.

Breiman has shown that the generalization error of a random forest depends on the following two factors:
1) The correlation between any two trees in the forest. Increasing the correlation increases the forest gener-
alization error rate. 2) The strength of each individual tree in the forest. A tree with a low error rate is a
strong classifier. Increasing the strength of the individual trees decreases the forest error rate. Reducing m,
the number of random features to select at each node, tends to reduce both the correlation and the strength
while increasing it increases both. But we have found that for a range of m the generalization error is quite
stable. For our spam detection tests, we have used the R implementation of Breiman’s random features. We
have also experimented with variations of the number of tree to grow and found that the performance is not
very sensitive to it, and have settled on using 500 trees in our experiments which seem to be quite adequate
for the size of the data we have.

4 Feature Engineering for Spam Detection

A critical component for spam detection solutions is feature engineering. A tremendous amount of domain
expertise is encoded in the rule sets made publicly available on the SpamAssassin website. SpamAssassin
features fall roughly into three areas:

1. Header: features about the meta information of a message including date, subject, Mail Transfer Agent
(MTA), Mail User Agent (MUA), content types, etc.

2. Body and raw body text: structures, markup, words and phrases, known obfuscations, etc.

3. Meta: boolean combinations of other rules — often used to improve the precision of the rules thus lowering
the FP rate.

Ongoing feature engineering is enabled by SpamAssassin’s extensibility through Perl regular expressions.
In fact, constant feature engineering is required to prevent decay of effectiveness in SpamAssassin and other
heuristic classifiers. Spammers increasingly react to known rules by avoiding techniques that fire highly
weighted rules and spoofing negative evidence rules. In our work looking at SpamAssassin performance on a
very wide range of enterprise spam we’ve seen all out assaults take place on SpamAssassin rules that result
in ten to fifteen percent drops in effectiveness in a single day.

For features based on terms and phrases feature engineering often requires introducing obfuscated versions
of positive evidence terms like Viagra which have substantial numbers of human parsable obfuscations such
as Via@gr@ or V—ag.r.a. Some of the more sophisticated spammers vary their obfuscations over large sets
of mailings (it is not as if they can “run out” of them) so that naive Bayesian filters attempting to learn
automatically will over-fit on highly sparse features generated for “one off” applications.

5 Experimental Results With Time-indexed Data

In exploring the properties of support vector machines and random forests we have extracted a set of 60,000
spam messages and 15,000 valid messages from large email corpora collected over the past six years.* The
purpose of these experiments is to make reasonably robust estimates of how well the techniques can be
expected to maintain effectiveness, at relatively low FP rates.®> We’ve noticed that most of the existing
evaluations of spam detection algorithm completely ignore the time issue, randomly selecting training and
testing sets from a email corpus. In contrast, we were interested in lookahead or generalization accuracy. For
each value of the lookahead parameter k,k = 1,..., K we computed statistics for the models trained on set

4 The email was collected from a range of public sources like www.spamarchive.org and private corpora representing
a wide community of email users. Also contained in the 75,000 messages used are approximately 3,000 messages
representing the sum total of reported errors from a popular commercial enterprise spam filtering product.

5 Enterprise clients of spam filtering products balk at FP rates > 0.25%.



i on holdout sets i + k, ¢=1,..., N —k where we used K = 5 and N = 30 for our experiments yielding a
sample size of 25.

We looked at both median and pessimistic estimates over thirty time-indexed sets® each composed of
2,000 spam and 500 valid messages. We use skewed sets because in practice it is far easier to collect spam
than valid email” and thus all industrial training sets can be expected to be highly biased towards spam.?

We ran the same set of tests for a very high dimensional proprietary set of term and phrase features for
SVM and Naive Bayes. We found broader effectiveness but slightly faster decay rates than for models that
combined both types of features. However, for the purposes of this paper and to maximize reproducibility all
results presented here were achieved using rules extracted using the 2.63 release of the SpamAssassin spam
classifier (the most recent release as of this writing.)

5.1 Median True Positive (TP) Rates

In this section we present the performance of each technique using Receiver Operating Characteristic (ROC)
curves of the median TP rate for various numbers of lookahead periods.® This is a straightforward assessment
of spam filtering effectiveness presented for one (left panel of Figure 1), three (right panel of Figure 1), and
five (left panel of Figure 2) lookahead periods. Careful examination of Figure 1 shows that the median
effectiveness for RF is a solid 5% higher than the SVM classifier. The right panel of Figure 1 shows that RF
and SVM are much closer for low FP rates and all three methods converge for FP rates between 1.2% and
1.5%. Interestingly enough at five periods ahead SVM clearly dominates at FP rates below 0.8% suggesting
that these models have more durable generalization accuracy.
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Fig. 1. Median TP Rate: (left) One Period Ahead, (right) Three Periods Ahead

6 Time indexing is based on the date in the Received header which is only missing for cases where valid mail was
sent and received within the same organization. In cases of valid mail without a Received header because it was
internal to an organization we substituted the Date header.

" Especially when the raw source messages must be collected — for users on Ezchange(tm) and Outlook(tm) systems
it is frequently difficult to get the complete source for a message.

8 Of course one could just sample from the spam messages to achieve more balanced sets but we have found that the
loss of exposure to different combinations of features, text obfuscations, and other novel spam tricks, significantly
damages effectiveness.

9 We computed the TP rate for each discrete level FP rate (since all the sets had the same number of true negatives)
and computed the median of these rates.
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Fig. 2. (left) Median TP Rate: Five Periods Ahead, (right) Minus One Mad TP Rate: One Period Ahead

5.2 Pessimistic True Positive (TP) Rates

It is not enough to look at expected performance (with even robust estimates) because we want to characterize
the variation of the model’s accuracy. Next we looked at pessimistic estimates of the TP rate to better
understand variation of accuracy. Our first pessimistic estimate is present the median minus one Mean
Absolute Deviation (MAD) across the modeling techniques.'® From the right panel of Figure 2 we see that
the RF models have almost 20% better effectiveness than the nearest competitor at 0.2% FP rate. The left
panel of Figure 3 shows that SVMs close about half of the gap seen for the single period lookahead. The
most extreme pessimistic measure, namely the minimum over the 25 test sets, is shown for one and three
periods of lookahead in the right panel of Figure 3 and Figure 4 respectively. The minimum TP rates for
one lookahead period shows total superiority of the RF models over the entire useful range of FP rates. For
the three periods of lookahead RF maintains a significant advantage over the smaller but more important

range of FP rates up to 0.6%.
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Fig. 3. ((left) Minus One Mad TP Rate: Three Periods Ahead, (right) Minimum TP Rate: One Period Ahead

10 Technically, we measure the mean of the negative deviation.



Comparative ROC: Lookahead = 3
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Fig. 4. Minimum TP Rate: Three Period Ahead

6 Conclusions

The performance of the SVM and RF models are comparable across intermediate levels of lookahead testing
over the lower FP rates required for enterprise spam filtering. However, for single period lookahead the RF
models show clear superiority in both expected accuracy and pessimistic measures of expected accuracy.
Both SVM and RF show superior median results at low FP rates relative to Naive Bayes though it does
reasonably well at high FP rates. Both RF and SVM demonstrate significantly better pessimistic estimates
than the Naive Bayes models at all levels of lookahead. Overall the results are gratifying in the sense that
the ensemble based technique (RF) showed itself to be more robust at low FP rates.
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