On Attacking Statistical Spam Filters

Greg Wittel & S. Felix Wu U.C. Davis

CEAS 2004

1

Outline

- Introduction
- Attack Classes
- Testing A New Attack
- Conclusions & Future

Attack Classes

• Attempted attack methods:

- Tokenization
 - Works against feature selection by splitting or modifying key message features
 - e.g. Splitting up words with spaces, HTML tricks
- Obfuscation
 - Use encoding or misdirection to hide contents from filter
 - e.g. HTML/URL encoding, letter substitution

Attack Classes cont.

- Weak Statistical

- Skew message statistics by adding in random data
- e.g. Add in random words, fake HTML tags, random text excerpts
- Strong Statistical
 - Differentiated from 'weak' attacks by using more intelligence in the attack
 - Guessing v. educated guessing
 - e.g. Graham-Cumming Attack

Attack Classes cont.

- Misc:

- Sparse Data attack
- Hash breaking attacks

Testing A New Attack

- Tested two types of attacks:
 - Dictionary word attack (old)
 - Common word attack (new)
- Both attacks add *n* random words to a base message.
- Tested against two filters:
 - CRM114 Sparse binary poly. + Naïve Bayesian
 - SpamBayes (SB) Naïve bayesian

Procedure

- Training data
 - 3000 hams from SpamAssassin corpus
 - 3000 spams from SpamArchive-mod corpus
 - CRM114 trained on errors
 - SB using bulk training

Procedure cont.

Test data

- Started with a base 'picospam' not in training data:

From: Kelsey Stone <bouhooh@entitlement.com> To: submit@spamarchive.org Subject: Erase hidden Spies or Trojan Horses from your computer

Erase E-Spyware from your computer

http://boozofoof.spywiper.biz

Procedure cont.

- Test data cont.
 - Base picospam is detectable by filters
 - Generated 1000 variations with *n* words added.
 - Words selected with and without replacement
 - n = 10, 25, 50, 100, 200, 300, 400
 - Recorded classifications, effect on score

Results

- Using 10,000 variants didn't effect results
- Selection with/without replacement had no effect
- Mixed results

CRM114 Results

- Both attacks failed; 0 false negatives
- Spam score *was* effected...

CRM114 Results cont.

12

SpamBayes Results

- Baseline Dictionary attack: mild success
- Common word attack...

SpamBayes Results cont.

14

SpamBayes Results cont.

- Common word attack reduces attack size by up to 4x
- What Happened? Why such poor performance on either attack?
- Hypothesis: Basis picospam was not in training data.
- Added the basis spam to SB's training data...

SpamBayes Results Part 2

- Retrained filter offered greater resistance to 'weak' dictionary attack.
- Small performance gain against common word attack.
- Gains not big enough to resist attack

SpamBayes Results Part 2 cont.

Dictionary Word Attack

SpamBayes Results Part 2 cont.

Common Word Attack

Conclusion & Future...

- Mixed success of common word attack shows need for further study
- Other filters
 - Bogofilter shows similar vulnerability
- Effect of re-training on attack msgs v.
 False negative, false positive rate
- Testing other basis picospams

Future cont.

- What makes a filter hard to distract?
- Relevance of independence assumption
- More advanced attacks
 - Natural language generation
- Traditional software flaws
 - Exploitable buffer overflows
 - Remote code execution

Colophon

- Contact information:
 - Greg Wittel (wittel at cs . ucdavis . edu)
 - S. Felix Wu (wu at cs . ucdavis . edu)
- Questions?