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Outline

• Introduction
• Attack Classes
• Testing A New Attack
• Conclusions & Future
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Attack Classes

• Attempted attack methods:
– Tokenization

• Works against feature selection by splitting or
modifying key message features

• e.g. Splitting up words with spaces, HTML
tricks

– Obfuscation
• Use encoding or misdirection to hide contents

from filter
• e.g. HTML/URL encoding, letter substitution
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Attack Classes cont.

– Weak Statistical
• Skew message statistics by adding in random

data
• e.g. Add in random words, fake HTML tags,

random text excerpts

– Strong Statistical
• Differentiated from ‘weak’ attacks by using

more intelligence in the attack
• Guessing v. educated guessing
• e.g. Graham-Cumming Attack
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Attack Classes cont.

– Misc:
• Sparse Data attack
• Hash breaking attacks
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Testing A New Attack

• Tested two types of attacks:
– Dictionary word attack (old)
– Common word attack (new)

• Both attacks add n random words to a
base message.

• Tested against two filters:
– CRM114 - Sparse binary poly. + Naïve

Bayesian
– SpamBayes (SB) - Naïve bayesian
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Procedure

• Training data
– 3000 hams from SpamAssassin corpus
– 3000 spams from SpamArchive-mod corpus
– CRM114 trained on errors
– SB using bulk training
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Procedure cont.

• Test data
– Started with a base ‘picospam’ not in

training data:
From: Kelsey Stone <bouhooh@entitlement.com>
To: submit@spamarchive.org
Subject: Erase hidden Spies or Trojan Horses from your computer

Erase E-Spyware from your computer

http://boozofoof.spywiper.biz
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Procedure cont.

• Test data cont.
– Base picospam is detectable by filters
– Generated 1000 variations with n words

added.
• Words selected with and without replacement
• n = 10, 25, 50, 100, 200, 300, 400

– Recorded classifications, effect on score
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Results

• Using 10,000 variants didn’t effect results
• Selection with/without replacement had

no effect
• Mixed results
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CRM114 Results

• Both attacks failed; 0 false negatives
• Spam score was effected...
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CRM114 Results cont.
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SpamBayes Results

• Baseline Dictionary attack: mild success
• Common word attack...
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SpamBayes Results cont.
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SpamBayes Results cont.

• Common word attack reduces attack size
by up to 4x

• What Happened?  Why such poor
performance on either attack?

• Hypothesis: Basis picospam was not in
training data.

• Added the basis spam to SB’s training
data…
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SpamBayes Results Part 2

• Retrained filter offered greater resistance
to ‘weak’ dictionary attack.

• Small performance gain against common
word attack.

• Gains not big enough to resist attack
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SpamBayes Results Part 2 cont.
Dictionary Word Attack
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SpamBayes Results Part 2 cont.
Common Word Attack
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Conclusion & Future...

• Mixed success of common word attack
shows need for further study

• Other filters
– Bogofilter shows similar vulnerability

• Effect of re-training on attack msgs v.
– False negative, false positive rate

• Testing other basis picospams
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Future cont.

• What makes a filter hard to distract?
• Relevance of independence assumption
• More advanced attacks

– Natural language generation

• Traditional software flaws
– Exploitable buffer overflows
– Remote code execution
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Colophon

• Contact information:
– Greg Wittel ( wittel at cs . ucdavis . edu )
– S. Felix Wu ( wu at cs . ucdavis . edu )

• Questions?


