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Abstract

We discuss how the interaction between spam
senders and e-mail users can be modelled as
a two-player adversary game. We show how
the resulting model can be used to predict
the strategies that the two opponent commu-
nities will eventually adopt, and how it can
be employed to tune anti-spam filters.

1 Introduction

Spam e-mail messages, unsolicited messages sent
blindly to very large numbers of recipients, are increas-
ingly flooding mailboxes, undermining the usability of
e-mail. Several types of counter-measures have been
proposed, including special legislation, pricing policies,
and technological responses, such as anti-spam filters;
see, for example, Michelakis et al. (2004). We claim
that game theoretic models can contribute to the study
and further development of such counter-measures. As
a first proof of concept, we demonstrate how the in-
teraction between spam senders and e-mail users can
be modelled as a two-player game when anti-spam fil-
ters are available. We show how the resulting model
can be used to predict the behaviour that the two op-
ponent communities will eventually adopt, and how it
can guide the tuning of anti-spam filters that offer a
tradeoff between two types of misclassification errors.

Section 2 below introduces our game theoretic model
and discusses its parameters and assumptions. Sec-
tion 3 shows how predictions about the behaviour of
spam senders and e-mail users can be made by com-
puting the Nash equilibria of the game. Section 4 then
demonstrates how the model can be employed to tune
anti-spam filters. Finally, section 5 summarizes our
findings and proposes directions for further research.

2 Game theoretic model

We model the interaction between spam senders and
other e-mail users as a two-player game between the
community of spam senders (player I) and the com-
munity of e-mail users (player II). Figure 1 shows the
game in what is known as extensive form.1 The game
is repeated whenever a user requests to obtain the
next message from his incoming e-mail stream. At this
point, the spam senders, who play first, can interfere:
they may insert a spam message into the incoming e-
mail stream of the user (action S in figure 1), which
will cause the user to obtain a spam message, or they
may do nothing (action L in figure 1), which will cause
the user to obtain a non-spam, hereafter called legit-
imate, message. (If there is no legitimate message in
the incoming stream, we wait until one arrives.) Thus,
the frequency with which spam senders adopt action
S over repetitions of the game determines the aver-
age ratio of spam to legitimate messages in the users’
incoming streams. Although in reality spam senders
do not have the ability to decide whether or not they
will insert a spam message in a user’s incoming stream
on a message per message basis, the overall effect of
making this assumption in our model is that the com-
munity of spam senders controls the ratio of spam to
legitimate messages the community of e-mail users re-
ceives, which is a reasonable assumption.

We focus on the scenario where all user mailboxes are
fitted with anti-spam filters that flag messages they
consider spam; this may be the effect of legislation
that requires Internet service providers (isps) to pro-
vide such filtering facilities to their users. The filters
can be modelled as chance nodes, labelled F in figure
1. On average, the filters misclassify spam messages
as legitimate (S →“L” in figure 1) with probability ε,
and legitimate messages as spam (L →“S”) with prob-
ability η. The users are not aware of the true classes of
the messages before they read them, so when they see

1For an introduction to game theory, see Davis (1983).
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Figure 1: Extensive form of the spam game

that their filter has classified a message as legitimate,
they do not know which of the two U nodes in the set
“L” of figure 1 the game is at. Similarly, they cannot
distinguish between the two U nodes of the set “S”.

When the users encounter a message that has been
classified as spam (“S”), they can trust their filter’s
decision and delete the message without reading it (ac-
tion D), or they can ignore the filter’s decision and
read it (action R). For completeness, we assume that
the same actions are available with messages the fil-
ter has classified as legitimate (“L”): delete the mes-
sage without reading it (D) or read it (R). Each user
has to select a strategy of what he will do with in-
coming messages depending on the decisions of his fil-
ter; for example, read messages classified as legitimate
and delete messages classified as spam (strategy RD);
or read all messages, regardless of the filter’s decision
(RR). There are four such pure strategies, denoted
RD, RR, DR, DD, where the first and second letters
determine the user’s actions when the filter has clas-
sified the message as legitimate or spam, respectively.
DD corresponds to the case where a user abandons
completely reading e-mail. DR, which does not make
much sense, is included only for completeness, and will
be disposed off with formal arguments later on.

More generally, a user may adopt a mixed strat-
egy σ, whereby whenever the game is repeated he
adopts one of the four pure strategies with probabili-
ties σ(RD), σ(RR), σ(DR), and σ(DD), respectively,
with σ(RD) + σ(RR) + σ(DR) + σ(DD) = 1. Sim-
ilarly, we may assume that the overall community of
users (player II) adopts a strategy σ, whose probabil-
ities reflect the frequencies with which it adopts ac-
tions R and D for messages flagged as legitimate or
spam, whenever the game is repeated. In the same
manner, the spam posters (player I) adopt an overall
strategy π, which specifies the probabilities π(S) and
π(L) = 1− π(S) of selecting actions S and L.

Whenever the game of figure 1 is repeated, the actions
that players I and II select lead to a particular cost
or benefit for each player. If player I selects action

S and the filter misclassifies the message (S →“L”)
and player II selects action R, then the game ends (at
the leftmost leaf of figure 1) with a benefit of βR > 0
for player I and a cost of −αS for player II. The βR

quantity is the average benefit the spam poster ob-
tains from each spam message that is read, taking into
consideration factors such as the average profit from
selling the products being advertised, the percentage of
users that order products after reading spam messages,
etc. The −αS quantity is the average cost of reading a
spam message, taking into consideration factors such
as the average cost of downloading it, the average time
it takes to read it, and the average cost of being per-
suaded occasionally to do business with the sender;
the latter may be a positive factor, e.g., when a spam
message advertises a true bargain, but with fraud mes-
sages it will be a negative one. In the remainder of this
paper we assume that −αS < 0.

Returning to figure 1, deleting a misclassified spam
message without reading it (second leaf from the left)
incurs no loss to player II and a loss of −βD < 0 to
player I; −βD is the average cost of posting a spam
message that is never read. Moving to the second II
node from the left, reading or deleting without read-
ing a correctly classified spam message incurs the same
costs and benefits to the two players as in the first II
node from the left, because the costs and benefits de-
pend solely on the true class of the message, not the
class assigned to it by the filter. There is a simplifica-
tion here in the case of action R, because it might be
argued that reading a spam message when the filter
has correctly flagged it as spam (third leaf from the
left) incurs lower cost to the user than when reading a
spam message that the filter has mistakenly classified
as legitimate (first leaf from the left). For example, a
user may read messages flagged as spam late at night,
when downloading is less expensive; hence, reading a
spam message that has been classified as spam should
cost less than reading a spam message that has been
classified as legitimate. We will, nevertheless, adopt
this simplification to make the analysis of section 3
more manageable.

When the message is legitimate (third and fourth II
nodes from the left), there is no cost for player I, while
the benefit for player II is αL > 0 if the message is read
and −αL if it is missed. This is another simplification,
since the benefit from reading a legitimate message
may not be exactly the opposite of the cost of missing
it; for example, the benefit of reading it may be the
sum of the information value i of the message minus
the cost of downloading it, while the cost of missing it
may be simply −i if no downloading is involved. Here,
we assume that i outweighs any other factor; then, it
is reasonable to assume that the benefit of reading the



Table 1: Strategic form of the spam game

I\II RR RD DD
S (γ, −1) (−1 + ε(γ + 1), −ε) (−1, 0)
L (0, ξ) (0, ξ − 2ξη) (0, −ξ)

message is exactly the opposite of the cost of missing
it. Also, in the case of action R, it could be argued
again that when reading a legitimate message that has
been classified as spam, the benefit for player II should
be lower than when reading a correctly classified legit-
imate message; for example, the wrong flagging of the
message may have led the user to delay its processing.
A more elaborate form of our model could distinguish
between two types of R action, read immediately and
read with low priority, with different costs attached.

There could also be a fourth user action, for the case
where a human interactive proof is requested. In that
case, the message is returned to its sender, along with
a request to repost it, this time including in the subject
the answer to a riddle, to rule out automated spam-
ming software; including the right answer guarantees
that the filter will classify the message as legitimate.
We leave such enhancements for future work.

We let ξ = αL/αS and γ = βR/βD; following our
assumptions, ξ > 0 and γ > 0. In other words, ξ mea-
sures how much worse it is for II to miss a legitimate
message compared to reading a spam message, and γ
is the ratio of player I’s average benefit from a spam
message that is read to the average cost of sending a
spam message that is never read. For simplicity, we
pick the units of measurement for the payoffs (costs
or benefits) of players I and II such that αS = 1 and
βD = 1. Then, the payoffs are as in the lowest row
of figure 1.2 Furthermore, we assume that the game
is played repeatedly over a sufficiently short interval,
such that ξ, γ, ε, and η can be treated as constants.

From the extensive form of figure 1 we can construct
the game’s strategic form. This is a 2 × 4 bimatrix
showing the expected payoff of the two players for each
combination of pure strategies they may select. Strat-
egy DR of player II, however, is strictly dominated
by strategy RD in the plausible case that ε < 0.5
and η < 0.5, which means that RD always leads to a
greater payoff for II than DR, regardless of the strat-
egy that player I selects. Hence, II would never use
DR, and the 2× 4 bimatrix is equivalent to the 2× 3
bimatrix of table 1. We make the usual assumption
that the table entries can be viewed as utilities, and,
hence, it is legitimate to maximize expected payoffs.

2A better model would specify the outcomes in terms
of a non-linear utility function of the costs and benefits.

3 Nash equilibria

Of particular importance in the analysis of games
are Nash equilibria, hereafter called simply equilib-
ria. In our case, an equilibrium is any pair (π∗, σ∗)
of strategies of the two players, such that uI(π∗, σ∗) ≥
uI(π, σ∗) and uII(π∗, σ∗) ≥ uII(π∗, σ), for every π and
σ, where uI and uII denote the payoffs to the two play-
ers. In other words, no player has an incentive to devi-
ate unilaterally from (π∗, σ∗). When mixed strategies
are allowed, every game has at least one equilibrium.
In an infinitely repeated two-player game with a sin-
gle equilibrium, we can expect the game to settle at
the equilibrium, and, hence, we can predict the mixed
strategies that the players will eventually adopt.3 We
show below that, with the exception of a particular sit-
uation, the spam game always has a single equilibrium,
and, hence, we can predict the eventual behaviour of
the players and their expected payoffs.

The determination of equilibria when mixed strate-
gies are allowed is a computationally difficult problem.
Still, in any game with 2×M pure strategies, as in our
case, we can provide a complete listing of the equilib-
ria of interest using a quasi diagrammatic procedure,
in the spirit of the well known graphical solution for
2×M zero sum games (Owen, 1982; Hillier & Lieber-
man, 2001). We outline the procedure, apply it to
a numerical example, and then apply it to the spam
game of the previous section.

Consider a 2 × M game whose strategic form is the
bimatrix (A,B) with elements (aij , bij) representing
the payoffs to players I and II respectively, player I
selecting rows. Furthermore, assume that we have es-
tablished that no equilibrium where player I adopts
a single pure strategy exists. Hence, we only need to
search for equilibria where player I selects his first pure
strategy with probability p, with 0 < p < 1. The best
reaction of II to I’s choice of p is any mixed strategy
that constitutes a distribution on the set of best re-
sponse pure strategies J∗(p), where:

J∗(p) = argmax
j

[p b1j + (1− p) b2j ]

The pure strategies in J∗(p) maximize II’s expected
payoff, given I’s p. The expected payoff to II when he
adopts any mixture of pure strategies in J∗(p) is the
following piecewise linear convex function:

G(p) = max
j

[p b1j + (1− p) b2j ]

On the linear parts of G(p), the best response set J∗(p)
consists of a single pure strategy, while at the corners

3This is not the only interpretation of mixed strategy
Nash equilibria; for an illuminating discussion see section
3.2 of Osborne and Rubinstein (1994).



of G(p) the best response set J∗(p) consists of as many
pure strategies cross at that corner, typically two.

Consider first a value of p, with 0 < p < 1, where
G(p) has a corner, and assume for ease of exposition
that at that p there are exactly two best pure strategy
responses for II in J∗(p), namely j1 and j2. Let us also
assume that II adopts j1 and j2 with probabilities s
and 1−s, respectively. If (p, s) is an equilibrium, player
I must be indifferent between his two pure strategies
(that he mixes with probabilities p and 1−p) for the s
that II has selected, because otherwise player I would
be better off using only the pure strategy that gives
him a better payoff, i.e., he would have an incentive to
abandon (p, s) for (1, s) or (0, s). Player II must also
be indifferent between the two strategies j1 and j2,
that he mixes with probabilities s and 1− s, but this
is guaranteed by the fact that j1, j2 ∈ J∗(p). Hence,
a necessary condition for (p, s) to be an equilibrium is
that player I must be indifferent between his two pure
strategies. This is also a sufficient condition: if player
I is indifferent between his two pure strategies, he has
no incentive to change his mixture p; and player II
has no incentive to change his mixture s of j1 and j2,
because they lead to the same (best) payoff; nor does
player II have any incentive to start using any other
pure strategy outside J∗(p), because by the definition
of J∗(p) it would lead to a lower payoff; hence, no
player has an incentive to deviate unilaterally from
(p, s) and, therefore, (p, s) is an equilibrium.

Therefore, we obtain an equilibrium at p if and only
if there is a mixture s of j1 and j2, with 0 ≤ s ≤ 1,
that leaves player I indifferent between his two pure
strategies. The latter can be written:

a1j1 s + a1j2 (1− s) = a2j1 s + a2j2 (1− s)

If a1j1 = a2j1 and a1j2 = a2j2 , then the previous equal-
ity holds for any s, and, hence, we obtain a continuum
of equilibria at p. Otherwise, the previous equality has
a single solution for s:

s =
(

1− a2j1 − a1j1

a2j2 − a1j2

)−1

and 0 ≤ s ≤ 1 if and only if the following holds:

(a2j1 − a1j1)(a2j2 − a1j2) ≤ 0 (1)

Thus, when a1j1 6= a2j1 or a1j2 6= a2j2 , there is a single
equilibrium at p if inequality (1) holds, and no equilib-
rium otherwise. The inequality can be interpreted as
stating that in the game restricted to columns j1 and
j2, I’s pure strategies are not strictly dominated.4

4Note that in a general 2 ×M game there must be at
least one corner where the inequality is valid, for otherwise
player I must have a strictly dominating strategy and the
game can be simplified further. Hence we get for this class
of games a constructive proof of Nash’s existence theorem.

Table 2: Strategic form of an example game

I \ II 1 2 3
1 (7,2) (1,7) (1,6)
2 (2,7) (6,2) (3,5)

p
1
=1/3 p

2
=3/4 1 p

G(p)

(1)

(3)

(2)

Figure 2: Best responses of II in the example game

For any p in a linear part of G(p) where J∗(p) = {j∗},
with 0 < p < 1, we obtain an equilibrium if and only
if a1j∗ = a2j∗ ; in fact we obtain a continuum of equi-
libria, for any mixture p of player I in the linear part.

To illustrate the procedure, we apply it first to a nu-
merical example whose strategic form is shown in table
2. There is no equilibrium where player I uses a single
pure strategy: if I uses only his strategy 1, then II’s
best response is his strategy 2, but then player I will
be tempted to changes his strategy to 2; similarly, if I
uses only strategy 2, then II’s best response is strat-
egy 1, but then player I will be tempted to change
his strategy to 1. In this game, G(p) is the following
function, shown diagramatically in figure 2.

G(p) = max {7− 5p; 2 + 5p; 5 + p}

The corners of G(p) are at p1 = 1
3 , the intersection

of strategies 1 and 3, and p2 = 3
4 , the intersection of

strategies 2 and 3, i.e., J∗( 1
3 ) = {1, 3} and J∗( 3

4 ) =
{2, 3}. There are no equilibria in the linear segments
(1), (2), and (3) of G(p), because 7 6= 2, 1 6= 6, and
1 6= 3. To check the first corner for equilibria, where
p = 1

3 , we note that a11 6= a21, a13 6= a23, and that the
game restricted to its first and third columns does not
show any domination in I’s strategies; hence we get
a single equilibrium. II’s equilibrium mixed strategy
is found by determining a mixing parameter s among
strategies 1 and 3 that makes I indifferent between his
two strategies, i.e.:

7 s + 1 (1− s) = 2 s + 3 (1− s)

and thus s = 2
7 . Hence, the equilibrium mixed strate-

gies at p1 = 1
3 are ( 1

3 , 2
3 ) for I and ( 2

7 , 0, 5
7 ) for II, with

expected payoffs 19
7 for player I and 16

3 for player II.
To check the second corner, where p = 3

4 , we note
that a12 6= a22 and a13 6= a23. Furthermore, the



game restricted to its second and third columns shows
a strictly dominating strategy for I, namely row two.
Hence, we get no equilibrium at p = 3

4 .

If the expected payoffs for strategy 2 of I and 2 of II
are changed to (1, 2), instead of (6, 2), there is still no
equilibrium where player I uses only his second pure
strategy (p = 0), but there is now an equilibrium where
he uses only his first pure strategy (p = 1) and player
II uses his second one. There are still no equilibria in
segments (1) and (3), and there is still a single equi-
librium at the corner p = 1

3 , which is not affected by
the change. However, there is now also a single equi-
librium at the corner p = 3

4 , because a13 6= a23 and no
row strictly dominates the other for I in the game re-
stricted to its second and third columns; requiring I to
be indifferent between his two strategies leads to the
conclusion that II must be using only his second strat-
egy at this corner. In addition, since a12 = a22 = 1,
we get a whole continuum of equilibria in the linear
segment (2) of G(p), where I uses any mixture p with
3
4 < p < 1 and II again uses only his second strategy.
Overall, then, there is a continuum of equilibria for
3
4 ≤ p ≤ 1, where II uses only his second strategy; the
expected payoffs are 1 for I and 2 + 5p for II.

Let us now apply the same procedure to the spam
game of section 2. The reader is reminded that ξ > 0,
γ > 0, and that we made the plausible assumptions
that ε < 0.5 and η < 0.5 to simplify the strategic
form of the game. As will be explained in section 4,
the latter two assumptions together also imply that
ε > 0 and η > 0. In the game of table 1, then, no
equilibrium where player I adopts a single pure strat-
egy exists: if I adopts S, II’s best reaction is DD, but
then player I will be tempted to change his strategy
to L; and if I adopts L, II’s best reaction is RR, but
then player I will be tempted to change his strategy
to S. Hence, at any equilibrium, player I must adopt
his first strategy with a probability p, with 0 < p < 1.
Interestingly, at any equilibrium the expected payoff
to player I is zero, because his second pure strategy
gives zero payoff and he must be indifferent between
his two strategies; i.e., the community of spam senders
as a whole neither profits nor loses. This is, however,
a collective figure; some individual spam senders may
profit and others may lose, with their payoffs summing
up to zero. The spam senders will never give up post-
ing entirely, because this does not yield an equilibrium,
as discussed above. Intuitively, if they all stop posting,
the users will start reading all messages (RR), and this
will tempt some spam senders to start posting again.

Player II’s best response to I’s choice of p is any mixed
strategy that constitutes a distribution on the set of
best response pure strategies J∗(p). The expected out-
come for II when he adopts such a mixed strategy is

Figure 3: Function G(p) in the spam game

the following piecewise linear convex function, which
is shown diagramatically in figure 3. The corners of
G(p) are at p1, the intersection of RR and RD, and
p2, the intersection of RD and DD.

G(p) = max
{
ξ − (ξ + 1)p; ξ − 2ξη + p(2ξη − ξ − ε);

−ξ + ξp
}

Let us first examine the case where −1+ ε(γ +1) < 0,
or equivalently ε < 1

γ+1 . In this case, there is no
equilibrium in the linear segments of G(p). Further-
more, when the game is restricted to its RD and DD
columns, row two gives a strictly dominating pure
strategy for player I, and hence there is no equilib-
rium at the corner of p2. However, there is no strictly
dominating pure strategy for player I in the game
restricted to its RR and RD columns, and γ 6= 0,
−1+ ε(γ +1) 6= 0. Hence, there is a single equilibrium
at the corner of p1, which occurs when player I mixes
actions S and L with probabilities (p1, 1 − p1) and
player II mixes actions RR and RD with probabilities
(s1, 1 − s1). From the equations of the segments of
G(p) and the requirement that player I must be indif-
ferent between his two pure strategies we obtain:

p1 =
2ξη

1 + 2ξη − ε
, s1 =

1− ε(γ + 1)
(γ + 1)(1− ε)

(2)

The expected payoff to player II is then:

VII
1 = ξ

1− 2η − ε

1 + 2ξη − ε
(3)

When 1
γ+1 < ε < 1

2 , it can be verified that we obtain
only a single equilibrium at the corner of p2, which
occurs when player I adopts a mixed strategy (p2, 1−
p2), while player II mixes actions RD and DD with
probabilities (s2, 1− s2), where:

p2 =
2ξη − 2ξ

2ξη − 2ξ − ε
, s2 =

1
ε(γ + 1)



The expected payoff to player II is now:

VII
2 = ξ

ε

2ξη − 2ξ − ε
(4)

Finally, when ε = 1
γ+1 we obtain single equilibria at

the corners of p1 and p2, and a whole continuum of
equilibria in the linear segment of G(p) where II’s best
response is RD. In all of these equilibria, it can be
verified that player II adopts the single pure strategy
RD (which means that users always trust their filter’s
decision), and player I mixes actions S and L with
probabilities (p, 1−p), with p1 ≤ p ≤ p2. The expected
payoff to player II is:

VII
∗(p) = ξ − 2ξη + p(2ξη − ξ − 1

γ + 1
) (5)

where p can take any value in [p1, p2]. The extreme
values of this range coincide with VII

1 and VII
2.

Note, also, that we have made the implicit assumption
that 1

γ+1 < 1
2 , i.e., γ > 1, for otherwise the cases

ε ≥ 1
γ+1 are impossible, since we have also assumed

that ε < 1
2 . Hereafter, we focus on the case where

γ > 1. The case γ ≤ 1 is easier to analyze, since we
obtain only the single equilibrium of equations (2)–(3).

4 Filter tuning

An immediate application of the above analysis is to
spam filter tuning. In the framework of Statistical De-
cision Theory (DeGroot, 1970), spam filters are deci-
sion making mechanisms in two states of nature (S, L)
and two actions (“S”, “L”). We assume that the filter
produces a scalar score x, normalized in [0, 1], which
indicates the filter’s confidence that the incoming mes-
sage is spam. Let fS(x) = P (x|S) be the distribution
of x for spam messages, and fL(x) = P (x|L) the distri-
bution for legitimate messages. We make the reason-
able assumption that fS is increasing in x and fL de-
creasing. The filters that minimize the expected cost of
the decision are characterized by the Neyman-Pearson
lemma, which in our case states that a message should
be classified as spam provided that fS(x)/fL(x) > M ,
where M is a function of the costs involved and the a
priori probabilities of the two categories of messages
(S, L). As illustrated in figure 4, under our assump-
tions on fL and fS the Neyman-Pearson criterion sim-
plifies to classifying a message as spam provided its
score x is greater than a value µ, which is determined
by the two distributions and M . For this type of fil-
ters, we can express ε (probability of S → “L” error)
and η (probability of L → “S” error) as:

ε(µ) =
∫ µ

0

fS(x)dx and η(µ) =
∫ 1

µ

fL(x)dx

0
µ

fL

MfL

fS

“L” “S”

x

ε(µ)
η(µ)

Figure 4: Applying the Neyman-Pearson lemma

All the above are shown in figure 4. In practice, the
exact distributions fS and fL may be unknown, and
we may only have estimates for some of the factors
that influence M , such as the a priori probabilities of
the categories. The ideal µ of figure 4, then, cannot be
identified precisely, and typically filters let their users
tune the value of µ by themselves. The selected µ
value is used as a threshold on x, i.e., messages whose
x is greater than µ are classified as “S”, and those
with x ≤ µ are classified as “L”. Using a µ value
to the right of the ideal one in figure 4, causes fewer
messages to be classified as “S” and more messages
to be classified as “L”; at the same time ε increases,
while η decreases. Similarly, using a µ value to the
left of the ideal one, decreases ε and increases η, as
more messages are classified as “S”.5 The users, then,
are faced with a tradeoff between ε and η, which is
controlled by the choice of µ and is characterized by
the function η = η(ε). The first derivative of this
function is:

dη

dε
=

dη/dµ

dε/dµ
= −fL

fS

which is negative, while the second derivative is:

d2η

dε2
=

d
dµ

(
dη

dε

)
dµ

dε
= −f ′LfS − f ′SfL

fS
3

which is positive given our assumptions on fS , fL, and
thus the tradeoff curve is convex. A reasonable form
of this curve in the case of a ‘good’ and a ‘bad’ filter is
demonstrated in figures 5 and 6 respectively, where ε0

denotes the value of ε that corresponds to η = 0.5, and
similarly for η0. Note that the assumptions of section
2 that ε < 0.5 and η < 0.5 imply that both ε and η are
bounded away from zero by ε0 and η0, respectively.

Returning to the spam game, we may assume that
player II uses a single filter, whose fS and fL are the
average distributions of the filters that are used by the

5In effect, the choice of µ allows users to change their
filter’s bias towards one of the two categories. An alterna-
tive biasing mechanism is to modify fS and fL, for example
by retraining the filter on a biased collection of messages.
Here we consider only the case where fS and fL are fixed
and the only biasing mechanism is the choice of µ.
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Figure 5: ε-η curve for a ‘good’ filter

individual users over the repetitions of the spam game.
This average filter will be characterized by a fixed ε-
η curve similar to those of figures 5 and 6. Player II,
then, can only select an ε value, and the corresponding
η value is determined by the ε-η curve.6

Player II should select the ε value that maximizes his
expected payoff. We thus consider VII

1, VII
2, and

VII
∗(p) of section 3 with respect to ε. If II selects a

relatively small error in the spam classification, i.e.,
ε < 1

γ+1 , then VII
1 of equation (3) applies. The first

derivative of VII
1 is:

dVII
1

dε
= − 2(1 + ξ)

(1− ε + 2ξη)2
(η′(1− ε) + η)

where η′ = dη

dε
. The expression −(η′(1 − ε) + η) is

decreasing with respect to ε and vanishes for ε = 1
(corresponding to η = 0, since µ = 1). Hence the
derivative of VII

1 is positive for ε0 ≤ ε < 1
1+γ , indi-

cating that VII
1 is increasing.

If the user selects a relatively large error in the spam
classification, namely 1

1+γ < ε ≤ 1
2 , VII

2 of equation
(4) applies, which is always negative. Its derivative is:

dVII
2

dε
= 2ξ2 η − 1− η′ε

(2ξ(η − 1)− ε)2

The expression η − 1 − η′ε vanishes for ε = 0 (corre-
sponding to η = 1, since µ = 0) and is decreasing with
respect to ε, so it is negative for 1

1+γ < ε ≤ 1
2 , showing

that VII
2 is decreasing.

The case ε = 1
γ+1 = ε∗ is of particular importance,

since it gives the supremum of VII
1 and VII

2. For this
value of ε, we get a continuum of equilibria. The payoff
to player II is given by VII

∗(p) of equation (5), where
p lies in [p1, p2] while player II uses the pure strategy
RD. As pointed out earlier, VII

∗(p1) = VII
1(ε∗) and

VII
∗(p2) = VII

2(ε∗). Thus the payoff to player II is
indeterminate, ranging between VII

1(ε∗) and VII
2(ε∗),

6Player II selects µ, but he can get feedback on the re-
sulting ε by collecting statistics on misclassified messages.

0
ε

η(ε)

1

1

η

0.5

ε
0

η
0

0.5

Figure 6: ε-η curve for a ‘bad’ filter
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depending on I’s mix p. It is straightforward to show
that VII

1 > VII
2 for the pair (ε∗, η∗).

Therefore, the optimal selection of ε presents a remark-
able discontinuity; see figure 7. Player II, the commu-
nity of e-mail users, should select an ε that is close but
less than ε∗ = 1

γ+1 , since VII(ε) tends to get its max-

imum when ε → 1
γ+1

−. Selecting ε = 1
γ+1 precisely,

leads to uncertainty on the outcome of the game, while
any ε > 1

γ+1 gives negative and certainly lower pay-
offs to II. Hence, a target for the community of e-mail
users should be to approach ε∗ from lower values, i.e.,
aim for a particular percentage of misclassified spam
messages in the entire community. The users (or their
administrators) can achieve this by agreeing to mon-
itor the percentage of spam messages their individual
filters misclassify, and tune their filters to keep the per-
centage close to (but less than) ε∗; then the average
filter will also approach ε∗ from lower values. The tar-
get ε∗ depends only on γ = βR/βD. Hence, to identify
ε∗ precisely, the users need to know the spam senders’
βR and βD (average benefit from each spam message
read, average cost of each unread spam message). In
the absence of accurate information on these parame-
ters, the users should prefer to overestimate γ.

When ε → ε∗−, equations (2) imply that s1 → 0+.
That is, the users’ eventual (equilibrium) strategy will
be to play RD coupled with an infinitesimal mix of
RR, namely always read “L” messages and almost al-
ways delete “S” messages; an infinitesimal number of
“S” messages will be read. (Intuitively, this provides
an incentive for the spam senders to limit their traffic,
since they have some hope of having their messages
read without inundating the network.) Provided that
ε → ε∗−, equations (2) also predict that the percent-



age of spam messages in the overall e-mail traffic will
eventually approach p1

∗ from lower values, where:

p1
∗ =

2ξη∗

1 + 2ξη∗ − 1
γ+1

p1
∗ is increasing with respect to η∗. As filters improve,

η∗ decreases, and the predicted percentage of spam
messages decreases, as one would expect, although the
optimal ε remains unaffected.

It is perhaps surprising that ε∗ does not depend on
ξ (cost of missing a legitimate message compared to
reading a spam message). This is against the intuition
that as ξ increases, filters should be tuned for larger
ε and smaller η, i.e., classify more easily messages as
legitimate, to avoid missing legitimate messages when
users trust their filters. This intuition, however, fails
to take into account that the choice of ε also affects the
behaviour of spam senders, and, thus, the percentage
of spam messages users receive. For example, increas-
ing ε may lead spam senders to post more messages,
which will also be classified more easily as legitimate,
and this may outweigh the users’ benefit from misclas-
sifying fewer legitimate messages. Hence, to determine
the optimal ε, one must also take into account the re-
action of the spam senders, which leads to ε → ε∗−.

An objection that can be raised against our mod-
elling of the spam senders as a single player is that
individual spam senders may act selfishly and ignore
their community goal of sticking to p1

∗; a Prisoner’s
Dilemma situation.7 For example, some individual
spam senders may decide to increase their frequen-
cies of posting spam, causing their community’s fre-
quency to exceed p1

∗ by ∆p. This, however, will lead
the users to switch to pure strategy RD, generating a
(p1

∗ + ∆p)(−1 + ε(γ + 1)) payoff for the community
of spam senders, which is negative for ε → ε∗−, lower
than the zero payoff of the equilibrium. If the cost pa-
rameters of the spam senders are sufficiently similar,
this decrease will be felt by the selfish spam senders,
who will view the increase of their frequencies as un-
profitable, moving back to their original frequencies
and restoring the collective frequency to p1

∗.

5 Conclusions and future work

We have shown how the interaction between spam
senders and e-mail users can be modelled as an ad-
versary game. We focused on the scenario where all
user mailboxes are fitted with anti-spam filters, and
the users can either read messages or delete them with-
out reading, with their actions depending only on the
verdicts of the filters. With the exception of a single

7We thank an anonymous reviewer for raising this point.

point in the tradeoff between the filters’ two types of
error, the game always has a single Nash equilibrium,
and, thus, always settles with players adopting partic-
ular strategies when repeated infinitely. We showed
how the model can be used to determine the opti-
mal point in the tradeoff, which e-mail users should
adopt, and we provided a prediction of the eventual
percentage of e-mail traffic that will be spam if the
optimal point is adopted. Determining the tradeoff’s
optimal point requires only information on the costs
of the spam senders. An immediate possibility, then,
is to collect such information. An alternative is to ex-
tend our model with techniques from Bayesian games,
where some of the opponents’ costs are unknown.

We have already pointed out the possibility of extend-
ing our model with additional user actions, to dis-
tinguish between read-immediately and read-delayed,
and allow requests of human-interactive proofs. Addi-
tional actions of the spam senders could also be in-
cluded, to distinguish between sending fraud spam
messages and genuine advertisements, blind spam
postings and spam messages that are tailored to the
interests of their recipients, and plain vs. disguised
spam messages (e.g., messages with additional random
words, intended to confuse statistical filters).8 One
may also study how isps and regulating bodies could
influence the spam senders’ βR and βD parameters, to
lower the expected percentage of spam messages.
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