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Abstract

Email is an increasingly important and ubiq-
uitous means of communication, both facil-
itating contact between individuals and en-
abling rises in the productivity of organiza-
tions. However, the relentless rise of au-
tomatic unauthorized emails, a.k.a. spam
is eroding away much of the attractiveness
of email communication. Most of the at-
tention dedicated to spam detection has fo-
cused on the content of the emails or on the
addresses or domains associated with spam
senders. Although, methods based on these
- easily changeable - identifiers work reason-
ably well, they miss on the fundamental na-
ture of spam as an opportunistic relationship,
very different from the normal mutual rela-
tions between senders and recipients of legit-
imate email. Here we present a comprehen-
sive graph theoretical analysis of email traffic
that captures these properties quantitatively.
We identify several simple metrics that serve
both to distinguish between spam and legiti-
mate email and to provide a statistical basis
for models of spam traffic.

1 Introduction

Spam is quickly becoming the leading threat to the via-
bility of email as a means of communication and a lead-
ing source of fraud and other criminal activity world-
wide. Much is known about spam traffic. According
to the Spamhaus project [16] the vast majority of spam
emails presently originate in the USA and China, hosted
by well known ISPs and generated by identified indi-
viduals. Nevertheless an increased effort in criminal in-
vestigation and waves of high profile legislation have

not yet succeeded at reducing the relentless increase in
spam traffic [10], which now accounts for about 83% of
all incoming emails, up from 24% in January 2003 [12].

It is often said that the problem of spam email is that it is
an extremely asymmetric threat. While it is technically
easy and very cheap to send a spam email it requires
sophisticated organization and much higher costs at the
receiving end to sort out legitimate emails from junk.

This asymmetry is of course not directly manifest in the
sender’s email address, on the domain he/she uses, nor
certainly on the simplest characteristics of the message
(e.g. its size). It is rather a property of structural re-
lationships - spammers tend to be senders to a socially
unrelated set of receivers - while legitimate email tends,
instead, to reflect the variety of mutual personal, profes-
sional, institutional ties among people. Thus by identi-
fying the comparative structural and dynamical nature
of email traffic, we expect to find good discriminators
between legitimate email and spam traffic. The goal of
this work is to present the modeling of email - legiti-
mate and spam - traffic as networks, in order to identify
graph theoretical metrics that can be used to differenti-
ate between the two. We are also interested in providing
a unified view of several metrics characterizing the rela-
tionships between senders/recipients and their evolution
for legitimate and spam traffics in order to formulate, in
the future, a predictive model of spam dissemination.

Our study goes beyond several recent analyses [4, 7]
on the graphical nature of spam traffic. We deal with
a different database, involving a much larger number
of users and messages, and analyze a wider set of met-
rics, both static and dynamic. We will show that there
is no single graphical metric that unequivocally distin-
guishes between legitimate and spam email. There are,
however, several graph theoretical measures that can
be combined into a probabilistic spam detection frame-
work. These are then identified as candidates for the



construction of a future spam filtering algorithm.

The remaining of this paper is organized as follows. In
section 2 we introduce the modeling of email traffic in
terms of two graph classes and present the types of met-
rics to be studied. Section 3 presents the email workload
used in this work. We present several graph theoretical
metrics and evaluate this workload according to them
in Section 4. In Section 5 we present related work. Fi-
nally, we present our conclusions in section 6 and dis-
cuss open questions left for future work.

2 Graph-Based Modeling of E-mail
Workloads

In order to characterize spam email traffic versus non-
spam we define two types of graphs: a user graph and a
domain graph. The vertices of the user graph are email
senders and recipients of our log. An email sent by A
to receiver B results in a link between A and B. The
domain graph has as vertices the domains of the exter-
nal senders being analyzed, and users inside the local
domain. In this case, if an user B of the local domain
receives an email from any user in an external domain
D, we define a link between D and B. Note that, sets of
users external to the local domain who share an domain
are aggregated together into a single node. Note, also,
that the domain graph is a simpler bipartite graph and
not all characteristics studied will be valid in it.

The edges of both graphs can take one of four forms:
directed or undirected; binary (or unweighted) or
weighted (e.g. by the number of emails exchanged or by
the total size of the emails exchanged in bytes). These
options cover most of the possibilities for direct graph-
ical construction out of the email logs at our disposal
(described in Section 3).

The user graph is, in principle, the most useful in iden-
tifying the individual nature of users as spam or non-
spam senders. In some cases these characteristics ex-
tend to the whole external domain (particularly if the
spammer changes his name1 more often than its do-
main) and the domain graph produces a useful aggre-
gation of the user data. We believe that user graphs will
be more effective in identifying senders of non-spam
since spam senders tend to change their full email ad-
dress very frequently.

The user or domain graphs can be constructed exclu-
sively out of spam traffic, non-spam traffic, or the ag-
gregate set of all emails. Some of the graph theoretical
properties studied below will be analyzed in terms of

1The first part of the address, located before the @.

the graphs constructed when considering the different
traffics separately while others will be evaluated on se-
lected nodes from the aggregated traffic. The selected
nodes represent senders in the aggregated graph and can
be divided in two classes - spam and non-spam - based
on the type of emails they send. These classes do not
form disjoint sets, see Table 2.

Given these two graph types we will analyze two types
of properties: (i) structural and (ii) dynamical. The
former capture the structure of social relationships be-
tween users exchanging emails, while the latter relate to
how graphical properties evolve over time. As we shall
show below there are distinct independent signatures of
spam traffic in both structural and dynamical properties.
As a consequence they should be taken together to gen-
erate a better detection procedure.

3 E-mail Workloads

Measure Non-Spam Spam Aggregate
# e-mails 336,580 278,522 615,102
Size of e-mails 11.00 GB 1.70 GB 12.71 GB
# sender users 94,985 170,664 263,144
# sender domains 20,414 48,087 59,971
# recipients 26,450 12,867 35,471

Table 1: Workload summary

The construction of the graphs introduced in Section 2
is subject to several practical constraints. Our knowl-
edge of email traffic comes from Postfix logs of the cen-
tral SMTP incoming/outgoing servers of an academic
department from a large University in Brazil. Incoming
emails only contain the recipients internal to the depart-
ment’s domain. Outgoing emails contain the full list of
recipients. Moreover our data set does not contain infor-
mation about emails exchanged between users external
to the domain.

The logs were collected between 11/18/2004 and
12/31/2004 and contain the following data for each
email: (i) received time and date; (ii) a reject flag, in-
dicating whether connection was rejected during e-mail
acceptance (iii) Size of email2; (iv) sender address; (v)
list of recipients and (vi) a spam flag, indicating if it was
classified as spam or not by Spam-Assassin [15].

The logs were sanitized and anonymized to protect the
users’ privacy. Statistical characteristics of the work-
load are in agreement with previous email traffic analy-
ses [9, 6, 17]. Table 1 summarizes the data set.

Spam-Assassin [15] is a popular spam filtering software

2Only for the accepted emails.



that detects spam emails based on a changing set of
user-defined rules. These rules assign scores to each
received e-mail based on the presence in the subject or
in the e-mail body of one or more pre-categorized key-
words. Spam-Assassin also uses other rules based on
email size and encoding. Highly ranked emails, accord-
ing to these criteria, are flagged as spam.

4 Spam Networks vs. Legitimate Email
Networks

Type External Internal
Spam 169931 (277535) 733 (987)
Non-Spam 93666 (186607) 1319 (151973)
Spam & 2366 (-) 139 (-)
Non-Spam
Total 263231 (462142) 1913 (152960)

Table 2: Number of unique email addresses by origin
(internal or external to the domain) and classified as
spam, non-spam or both. Numbers in parentheses in-
dicate the total number of emails sent by each class.

Although spam emails originate mainly from users out-
side the local domain spam senders use several tech-
niques to falsify or steal local addresses (e.g. crawl-
ing the web for email addresses available at web pages,
network sniffing, name dictionaries). As a result spam
email does originate from the local domain both from
real users and from forged ones. This mixing between
regular email users and spam senders can lead to more
complex email networks than might have been naively
expected and poses a challenging problem for detection.

Table 2 summarizes the number of addresses and emails
by node classes and by internal or external origin. Node
classes are as defined in Section 2 plus a third category
- Spam & Non-Spam - which is the intersection of the
former two. The size of this overlap shows the impact
of email address spoofing.

Most emails originate outside the domain. In our log
most outside users are spam senders and account for
the majority of the emails. Because it is very easy for
a spammer to forge an address spam senders use many
addresses simultaneously and/or frequently switch be-
tween them. This strategy is visible in our database
as non-spam internal users send many more emails per
user than spam internal users. We expect that this is a
general feature of spam versus non-spam traffic.

The number of spam senders that are internal is very
small. The fraction of these that send exclusively spam
is 81%. These addresses correspond presumably to in-
ternal emails that have been forged and do not actually

exist3. The remaining addresses send both spam and
non-spam and are probably genuine users whose ad-
dresses have been spoofed.

4.1 Structural analysis of spam vs. non spam
email graphs
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Figure 1: Distribution of the node degrees for sender
classes in the aggregated graphs.

One of the most common structural measures analyzed
in complex networks is the distribution of the number
of the incoming and outgoing node connections, or de-
gree [14, 13, 2]. Figure 1 shows the distribution of the
out-degrees of the different sender classes for the user
and domain graphs.

The out degree distributions approximately follow a
power law (C/xα). By using a simple statistical linear
regression we estimated the exponent α that best mod-
els the data. For the user graph we obtained α = 1.497
(with R2 = 0.965.) for spam senders and α = 1.359 (R2

= 0.981) for non-spam senders. We conclude that the
spam sender’s out degree distribution is slightly more
skewed. We conjecture that this is because spammers
have a limited knowledge of the set of users in each
specific domain. Since in our analysis we only observe
a fraction of the spammers’ lists (the one composed by

3This suggests that a simple effective way to filter out
spam originating from internal domain addresses is to verify
that they correspond to an existing user.



the messages sent to the domain studied) there are no
spammers with recipients’ lists as large as those found
for non-spam senders.

Degrees from 1 to near 20 are much more probable for
spam senders than for non spammers, while very large
degrees are more likely in non-spam. There is no dif-
ference between the two sender classes in the body of
the distribution, for degrees from about 20 to 400. The
mean out-degrees, are 3.56 and 1.63 for non-spam and
spam, respectively (see Table 2).

In the domain graph the out-degree distribution shows a
much higher probability for nodes with low out-degree
in spam traffic than in non-spam.
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Figure 2: Distribution of Communication Reciprocity

In order to evaluate discrepancies between in and out
sets of addresses for a given node we create a simple
metric called Communication Reciprocity (CR) of x as:

CR(x) =
|OS(x) ∩ IS(x)|

|OS(x)|
, (1)

where OS(x) is the set of nodes that receive a message
from node x and IS(x) is the set of addresses that send
messages to x. With our choice of normalization this
metric measures the probability of a node receiving a
response from each one of his addresses.

Figure 2 shows the distribution of the Communication
Reciprocity. This metric is able to effectively differ-
entiate users associated with spam from non-spam. The

grouping of users in the domain graph makes this differ-
entiation more difficult. However, even in the domain
graph the difference is very clear.

The analysis of the communication reciprocity suggests
that a strong signature of spam is its structural imbal-
ance between the set of senders and receivers associ-
ated with a spam sender. However whenever there is
an imbalance, how many of the unmatched addresses
correspond to spam senders?

To address this question, let the asymmetry set for a
node be the difference of its in and out sets. Figure 3
shows the number of spam addresses in the asymmetry
set versus the size of the asymmetry set itself. The re-
sulting relation is very well fit by a straight line at 45o,
showing a strong correlation between the two numbers.
The statistical correlation is ρ = 0.979 for user graph
and ρ = 0.998 for the domain graph. So, almost all
senders in the asymmetry sets are spammers indiffer-
ently of the graph analyzed. The non spam data is not
very well modeled by a 45o straight line. These corre-
spond to the non spam senders that were not answered
(or to whom we could not see an answer in our log). The
correlation is ρ = 0.8723 and ρ = 0.9932 for the user
and domain graphs respectively. As expected from the
result of the spam data the non spam data has a higher
correlation for the domain graph.
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Figure 3: Number of spammers/non spam senders in the
asymmetry set vs. the number of nodes in it

This result can be made sharper if we analyze the corre-
lation between the number of spammers in the incom-
ing set of a node and spammers in its asymmetry set.
We find ρ = 0.999 and ρ = 0.994 for the user and
domain graphs, respectively. There is a slightly worse
correlation in the domain graph. We conjecture this is
due to the external reliable domains used by spammers
(e.g. through spoofing and forging techniques). These



may not be counted in the asymmetry set since they are
replied through their legitimate emails but are part of
the incoming set as spammers.

These results show that spam messages are almost never
replied to, except in cases of spoofed or forged domains
or users’ ids and rarely, we assume, intentionally.

Asymmetry sets can in principle be used as a compo-
nent in a probabilistic spam detection mechanism. The
arrival of an email from a sender that has already been
contacted by an internal recipient is an indication that it
has high probability of being a non spam.

Another common characteristic of social networks is a
high average clustering coefficient (CC) [8]. The CC
of a node n, denoted Cn, is defined as the probability
of any two of its neighbors being neighbors themselves.
This metric is associated to the number of triangles that
contain a node n. For an undirected graph, the maxi-
mum number of triangles connecting the Nn neighbors
of n is Nn × (Nn − 1)/2. Thus, the CC measures the
ratio between actual triangles and their maximal value.
During clustering coefficient analysis we only consider
the nodes with Nn > 1, since this is a necessary condi-
tion for the CC to be nonzero.
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Figure 4: Distribution of the clustering coefficient for
the different classes in the aggregated user graph.

Figure 4 shows the distribution for the CC of nodes in
the aggregated graphs. The clustering coefficient mea-
sures cohesion of communication, not only between
two users but among friends of friends. This is a perva-
sive characteristic of social relations that is absent from
spam sender receiver connections. As a result regular
email users have higher CC than spam senders. In terms
of the average value, regular email also has a higher
value (0.16 against 0.08).

Some recent studies [4] have studied graphical metrics
of the strongly connected components (SCC) of email
graphs. A SCC is a subset of the nodes of a graph, such
that one node can be reached from any other node in
the set following edges between them. A complemen-

tary measure to the CC and SCC is the average path
length between two nodes. The CC and average path
length properties are generally related to the so-called
small world networks, which display high CC (higher
than a random graph with the same connectivity) and
short path length, usually comparable to log N , where
N is the number of nodes in the graph.

In our experiments both the SCC and the average path
length have not been able to convincingly differentiate
spam from legitimate traffic. All of the graphs studied
are small world networks to some extent. Also all of the
graphs have giant connected components. Other studies
have used the clustering coefficient of SCCs to identify
spam in networks constructed from the correspondence
of a single user [4]. However for data from servers that
aggregate the communication between different senders
and recipients we find that these metrics do not suffice
to perform a clear identification of spam.

Another interesting structural characteristic of graphs is
the probability of visiting a node during a random walk
through the graphs [5]. At each step of the random walk
we need to select the next node to be visited. This can be
done in two ways. The next node can be randomly se-
lected from the out set of the current node or we can per-
form a jump. For a jump, one of the nodes of the graph
is selected randomly as the next node. Note that, this
measure is related to node betweenness4 since higher
node betweenness tends to generate a higher probability
of visitation. Nevertheless this probability is much eas-
ier to compute than node betweenness for large graphs.
The probability P (x) of finding a node x in a random
walk is computed iteratively as follows:

P (x) =
d

N
+ (1 − d) ∗

∑

z ∈ IS(x)

P (z)

|OS(z)|
, (2)

where d is the probability of performing a jump during
a random walk, N is the number of nodes in the graph.
The parameter d is a dumping factor that can be varied.
A value usually used in the literature is 0.15 [5], that is
also the value we use in our measurements.

The results are shown in Figure 5. The difference be-
tween spam and non-spam behavior is less noticeable
in the domain graph than in the user graph. Spam nodes
show generally lower probabilities of being visited, as
might have been expected because of the asymmetry of
their communication. Visiting probabilities for spam
nodes in the user graph are localized to the initial and
final parts of the distribution and are less pronounced in
the middle range.

4The number of shortest paths that pass through a node.
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Figure 5: Distribution of the probability of finding a
node during a random walk.

The node visitation probability distributions can be
modeled by a power law. We estimate the correspond-
ing exponent at α = 0.694, 1.097 and 0.975 for the
non-spam component of the user graph, and for the non-
spam and spam components in the domain graph, re-
spectively. The R2 associated with the fits varies be-
tween 0.959 and 0.998. The R2 for the spam curve of
the user graph is 0.853, showing that it is not well mod-
eled by a power law, as visual inspection suggests.

4.2 Dynamical analysis

Beyond the structural characteristics of the graphs of
spam and non-spam email other metrics related to the
dynamics of communication and graph evolution may
help model spam traffic.

A large amount of effort has been devoted recently to
creating realistic growth models for complex networks.
One of the key characteristics of such models is the evo-
lution of the number of nodes and edges, as well as the
probabilistic connection rules for the new nodes to those
already in the graph. Figure 6 shows the evolution of the
graph in terms of number of nodes and edges. We plot
these quantities against percentage of messages evalu-
ated for each graph, to avoid the influence of the rate
of message arrival, which varies with time depending
on the type of the traffic being considered (e.g. the bell
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Figure 6: Graph evolution by percentage of messages.

shaped behavior for the non spam traffic against the al-
most constant rate for spam traffic [9, 3, 6]).

The growth of the aggregated graph (a composition of
the spam and the non-spam graphs) results from the
growth in both the spam and non-spam components.
The spam subgraph is a much more rapidly growing
structure.Over the time of the log we find no satura-
tion effect in these numbers. Instead the number of ad-
dresses and edges grows almost linearly with the num-
ber of emails. An eventual saturation in the non-spam
component might be expected for longer times.
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the different traffics.



Another important dynamical graph characteristic is
how the weights of edges evolve. An interesting metric
that can be used to measure this is the stack distance [1]
of connected pairs in terms of the emails they exchange
over time. The stack distance measures the number of
distinct references between two consecutive instances
of the same object in a stream. We take the total email
log as the stream and each pair (sender,receiver) as the
object, disregarding the order. Figure 7 shows the pairs’
stack distance distributions. We see that temporal local-
ity is much stronger in non-spam traffic. This means
in practice that legitimate users exchange emails over
small concentrations of time.

We were also interested in studying how do the nodes
communicate with their peers in terms of the number of
messages. Because of the impersonal nature of spam we
expect that spam senders communicate in a more struc-
tured way with their recipients. Not only will legitimate
senders show more variation in the number of messages
they send to each person in their out sets, they will also
show variability of the messages themselves in terms of
their sizes. In order to quantify these effects we evalu-
ated the normalized entropy of the in and out flows for
each node, defined as

H(x) =

∑
y∈OS(x) −p(y) ∗ log(p(y))

log(|S(x)|)
, (3)

where p(y) is the probability of y receiving a message
from x and and |S(x)| is the number of distinct ele-
ments in the set being considered.

Figure 8 shows the normalized entropy for the out flow
of the nodes in the different sender classes for the ag-
gregated graphs. As expected, spammers communicate
with their recipients with much less variability (higher
entropy). A similar analysis was conducted considering
the bytes that each node sends with similar results.

5 Related Work

Several studies have recently analyzed the statistical
properties of email workloads [6, 11, 9, 3, 17]. These
studies consider the messages as a flow and study met-
rics such as inter-arrival times, e-mail sizes, and number
of recipients per e-mail. Although spam and legitimate
email show differences in terms of these metrics little
has been done about using them to filter out spam. The
work of the present manuscript takes a different tack
by creating a graph theoretical higher level representa-
tion of email traffic and attempting to differentiate spam
from legitimate email in this abstraction. We believe
that this approach, based on graph theoretical metrics,
proves to be much better suited to the filtering problem.
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Figure 8: Distribution of entropy of the number of mes-
sages in the flow of e-mails for the aggregated graph.

Other recent papers have focused on models of email
traffic as graphs [4, 7]. For example in Ref. [4] a graph
is created representing the email traffic captured by the
mailbox of an individual user. The subsequent struc-
tural analysis is based on the fact that such a network
possesses several disconnected components. The clus-
tering coefficient of each of these components is then
used to characterize messages as spam or non-spam.
Their results show that 53% of the messages were clas-
sified using the proposed approach and they obtained
100% of accuracy in this subset. Our graphs are based
on a different type of dataset, i.e. the logs of SMTP
servers, and as such do not take the perspective of the
individual user. As a result for our data set the approach
proposed in [4] can not be used successfully since there
is a giant SCC in all of the graphs shown. In [7] the au-
thors used the approach of detecting machines that be-
have as spam senders by analyzing a border flow graph
of sender and recipient machines. Moreover, they an-
alyzed the evolving graph structures over a period of
time, based on a single metric using the HITS algo-
rithm. Our workload differs from theirs since we do not
have access to the underlying overlay network formed
by email relays.



6 Conclusions

In this paper, we have shown that legitimate and spam
email graphs differ in two fundamental classes of char-
acteristics: structural, which capture the graphs’ archi-
tecture, and dynamical, concerning node communica-
tion and graph evolution.

We have shown that the spam and non spam subgraphs
are structurally characterized by different distributions
of the clustering coefficient of their nodes. Legitimate
email users display on average higher clustering coef-
ficients than spam senders. Node visitation probabil-
ity is a measure of the centrality of a node relative to
other nodes in the graph. Legitimate email nodes have
higher visitation probability than spam nodes. We also
defined a new metric called communication reciprocity.
It measures the probability that a node receives a re-
sponse from any of its addressees. There is a strong dif-
ference in the probability distributions of the communi-
cation reciprocity in the legitimate and spam graphs; le-
gitimate nodes have a much higher probability of being
responded to. Another metric introduced in this paper
is the email asymmetry set, which represents the differ-
ence between the sets of in and out edges of a node. We
showed that there is a strong correlation between the
size of asymmetry sets and the number of spammers
in the set. Dynamically the spam graph grows much
faster than the legitimate email graph. The legitimate
email graph grows more slowly both in the number of
nodes and edges, manifesting the higher stability of re-
lations in a social group. Two other dynamical metrics,
entropy and stack distance, are used to reveal the tem-
poral characteristics of communication among nodes.
Spam nodes display a much higher entropy than legiti-
mate email users, and a much longer stack distance.

We have shown that differences in both classes of graph
characteristics can be explained by the same hypothe-
sis, namely that legitimate email graphs reflect real so-
cial networks, while spam graphs are technological net-
works, devoid of a sense of community. Although no
single metric can unequivocally differentiate legitimate
emails from spam, the combination of several graphical
measures paint a clear picture of the processes whereby
legitimate and spam email are created. For this reason
they can be used to augment the effectiveness of mech-
anisms to detect illegitimate emails.
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