
Spamato – An Extendable Spam Filter System∗

Keno Albrecht, Nicolas Burri, Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich, 8092 Zurich, Switzerland

{kenoa, burri, wattenhofer}@tik.ee.ethz.ch

Abstract

Spam filter developers are confronted with the
task of integrating their ideas in user-friendly
products. In this paper, we introduce Spam-
ato as an open, extendable, and multi-faceted
spam filter framework. Spamato provides fun-
damental services commonly required by fil-
ter developers to facilitate the implementation
of new approaches. Furthermore, we support
email clients with add-ons to enable users to
intuitively collaborate with Spamato. We also
present a variety of filters and exhibit an eval-
uation of URL-based techniques.

1 Introduction

Spam, phishing, and virus infected messages are indu-
bitably some of the primary annoyances of the Internet
experience. According to MessageLabs, in 2004 nearly
three out of four inspected messages have been classified
as unsolicited [1]. Although some organizations argue
that the peak of the spam vexation has passed, others
like Spamhaus predict an unabated increase to a spam
rate of 95 percent by mid-2006 [2].
Several approaches on how to deal with spam have been
discussed. The proposals are manifold and contain sug-
gestions like legal regulations [3, 4], economic burdens
[5, 6], DNS-based attempts [7, 8], and server- and client-
side solutions using a variety of filtering techniques.
While some governments around the world slowly begin
to enact and enforce laws punishing spammers, legal pro-
posals for the Internet suffer from national limitations.
Even if mass spammers like Jeremy Jaynes are sentenced
to 9 years of prison in the United States [9], similar busi-
nesses in China or Russia are not considered illegal.
Also technical approaches like increasing the costs of
bulk mailing or the addition of security features to the
mail exchange protocol might take years before becom-
ing reality. Differing interests prevent the fast devel-
opment of a new standard protocol to replace SMTP
which would be necessary to realize many of the pro-
posed spam countermeasures. Unilateral approaches like

∗ The work presented in this paper was supported (in
part) by the Hasler Stiftung under grant number 1828.

the Sender ID Framework (SIDF) [8] from Microsoft or
the DomainKeys system [7] from Yahoo may reduce the
amount of spam to a certain extent but for a signifi-
cant improvement of the situation a global solution is
required.
We believe that no panacea exists to remedy the spam
problem; even combinations of the proposed solutions
will not eliminate spam in the near future. If we as-
sume that spammers will always be able to advertise
their products by email, the primary remaining question
is how to prevent people from reading these messages.
Spam filters do not aim to avoid spam but to ease the
task of manually identifying and separating spam from
“ham” (wanted) messages, saving user time and com-
pany money. Spam filters can be employed on the server-
side, either at an ISP or in a corporation, or on the
client-side, being part of a user’s email client.
While there are dozens of different spam filters avail-
able, most of them have been built independently of
each other. Every author of a spam filter must rein-
vent the wheel; many fundamental operations such as
accessing and parsing a message have repeatedly been
implemented for every new filter. Also the integration of
filters into an email client and their final deployment are
important to reach a large user community. As the in-
stallation of several spam filtering tools on one machine
often leads to undesired side effects the users have to de-
cide on one system leading to unnecessary competition
amongst the filtering tools. To overcome the redundant
work and to simplify the development of new filters, we
introduce Spamato as an open and extendable spam fil-
ter framework.
Spamato aims to bring a practical, easy-to-use, and ef-
fective spam filter technology to the user’s desktop. It
has been designed to be used primarily as an email client
add-on, allowing users to control and adjust the filter-
ing process from within their email client. By providing
collaboration support and an intuitive graphical inter-
face, Spamato involves users in the spam decision task
and benefits from their feedback. Furthermore, the com-
bination of multiple filtering techniques leads to a high
spam detection rate and a low false-positive rate.
On the technical site, Spamato is an extendable frame-
work. It consists of a Core component providing basic
services—such as communication, event handling, and

security facilities—and plug-ins extending the Core. The
framework has been written in Java and can be used on
all major platforms making it accessible for many de-
velopers. The Spamato Core offers interfaces to write
email client add-ons as well as new filters and other ex-
tensions.1 We want to encourage spam filter developers
to rely on Spamato as a proven and tested framework
instead of bothering with redundant work. Besides the
basic functionalities Spamato also contains a statistics
engine which helps to evaluate new filters and to com-
pare their efficiency to other available algorithms.
This paper introduces Spamato; we explain the concept
of Spamato, present details about the filters we have im-
plemented on top of the Spamato framework, and high-
light the system’s benefits for users and developers. The
remainder of this paper is organized as follows: In the
next chapter, we present work related to ours. The third
chapter gives a technical overview of the Spamato frame-
work detailing the add-on concept, the plug-in mecha-
nism, and the filtering process. In Chapter 4, we de-
scribe and evaluate our filters. Finally, we conclude the
paper in Chapter 5.

2 Related Work

Existing spam filter systems can be classified as follows:
Server side filter systems are maintained by trained ad-
ministrators. In contrast, client side filtering systems are
designed to work without professional administration on
top of an email client or to be used as a proxy between
the email client and the email server. In this section,
we present a short overview over the most prominent
representatives of both classes.
On the server side Procmail [10] is the tool commonly
used to access emails. It directly manipulates messages
in the mbox file written by the server and allows exter-
nal plug-ins to decide how to process the messages. The
main drawbacks of the Procmail system are its compli-
cated setup and maintenance. Only trained administra-
tors are able to configure a whole Procmail system with-
out the risk of breaking the mail system. The most well
known spam filtering tool running on top of Procmail is
the Apache SpamAssassin [11, 12]. SpamAssassin uses
an extendable rule system to classify email messages. Its
popularity is based on the large number of available fil-
tering algorithms, which can be used as a SpamAssassin
rule. Additional rules implemented in Perl can be added
to customize the behavior of the system. The downside
of the system is its complicated setup and the only rudi-
mentary available user feedback channel. To report a
missed spam message a command line call needs to be ex-
ecuted. Consequently, additional software is required to

1Currently, add-ons for Microsoft Outlook and the Mozilla
Mail Client exist; Thunderbird will be supported soon. To
support other mail clients, a stand-alone email server proxy
is also available. Five different filters have been implemented
so far.

report spam mails if the user does not have direct access
to the SpamAssassin installation. This functional deficit
is especially problematic for a filter rule like Vipul’s Ra-
zor [13] which identifies spam mails by comparing in-
coming messages to a centralized spam database which
collects manual spam reports from all users of the sys-
tem.
SpamGuru [14] is another server side filtering system
developed by IBM. Unlike SpamAssassin and Spamato,
SpamGuru is a closed source project and thus not ex-
tendable by external developers. SpamGuru uses an op-
timized ordering of filter mechanisms to maximize the
message throughput of a server. A plug-in for the Lo-
tus Notes mail client provides a convenient user feedback
channel that is used to report spam messages to a col-
laborative spam filter which is part of the SpamGuru
system. Clients other than Lotus Notes are currently
not supported.
On the client side numerous email filters are available.
Unfortunately, many of these tools just use one single fil-
tering algorithm which limits their effectiveness. Beside
these single filter tools, there are also some filtering suits
available which combine several different algorithms.
Cloudmark’s SafetyBar [15] (formerly SpamNet) is a
commercial Microsoft Outlook(-Express) add-on. It em-
ploys several filtering techniques to identify messages but
mostly relies on collaborative filters. The SafetyBar add-
on is an extended version of Vipul’s Razor and thus ac-
cesses the same database as the Razor system. Cloud-
mark has not released the source code of their SafetyBar
making it impossible to extend the system with other
filters. Up to now, mail clients other than Outlook(-Ex-
press) are not supported.
SpamPal [16] is a client side filtering suite which is de-
signed to be email client independent. Instead of using a
special email client add-on, SpamPal acts as a transpar-
ent proxy between the email client and the email server.
SpamPal is an open source project and supports cus-
tom extensions which have to be implemented in C. The
system can only be used on Microsoft Windows systems
and does not provide a user feedback channel making it
impossible to employ collaborative filters.

3 System Overview

In this chapter, we first describe how the Spamato sys-
tem architecture has been designed. Then, we highlight
the add-on scheme, explain the dynamic plug-in mecha-
nism and, finally, detail how the system processes emails.

3.1 System Architecture

Figure 1 illustrates the Spamato system architecture and
its main components. The Spamato Core provides key
services to dynamically loaded plug-ins and extensions
of the Core. The Spamato Factory and the Plug-in Con-
tainer are the only parts of the Core that are statically
linked to it. They cannot be omitted since they launch

Bayesianato
Earl Grey
Domainator
Ruleminator
Razor

Sound Player
Statistics Engine
Update Manager

Add-ons

Optional Plug-ins

Plug-in Container
Spamato Factory & Base
Filter Manager
Web Configuration

Figure 1: Spamato consists of the Spamato Core which
can be extended by plug-ins and email client add-ons.

Spamato’s elementary services and initialize the system
and the plug-ins.
Spamato has been built according to the “everything is
a plug-in” paradigm. In fact, even some of Spamato’s
primary features are bundled in a mandatory plug-in,
the Spamato Base. Also the Filter Manager and the Web
Configuration are essential to the whole system. While
the first is a mere repository for all filters, the latter
embeds a simple HTTP server and shares its service with
other plug-ins (the plug-in mechanism is presented in
Section 3.3). Thereby, plug-ins can be configured using
a common web browser.
In contrast to compulsory plug-ins, the Sound Player,
which enables the Spamato Base to play a short jin-
gle when a spam message has been detected, as well as
the Statistics Engine, which sends data about the filter-
ing process to a server, are optional and can be omitted
without harming the system. Again, using the Web Con-
figuration the Sound Player can be configured to play
custom jingles and the behavior of the Statistics Engine
can be adjusted or completely turned off. Of course,
arbitrary filters can be added or removed from Spam-
ato and are (obviously) optional too. (In Chapter 4, we
describe the current filters in detail.)

3.2 Email Client Add-Ons

Spamato provides an interface to facilitate the develop-
ment of email client add-ons. Such add-ons can contain
buttons and other graphical widgets for representing in-
formation and user feedback. Displaying information to
users in their email client, such as the number of de-
tected spam messages, is an important feature used to
involve the user in the system. Receiving user feedback
is a fundamental requirement to support learning and
collaborative filters. Otherwise, learning filters like a
Bayesian-based filter can hardly develop their capability
to distinguish between spam and ham. Literally, a col-
laborating filter cardinally relies on users’ collaborative
rating to achieve a significant decision. Such a rating
can only be computed if users are able to vote for spam

or ham; this procedure is most effectively supported by
adding meaningful “report” (spam) and “revoke” (ham)
buttons to the user’s email client.
Unfortunately, the implementation of add-ons is not
standardized. Hence, every email client has to be sup-
ported in a different way. For instance, our Spamato
add-on for Microsoft Outlook is written in Visual Ba-
sic/C#, while the add-ons for Mozilla and Thunder-
bird are implemented using a combination of the XML
User Interface Language (XUL) and JavaScript. An-
other important point in add-on development is whether
the email client is capable of directly supporting Java.
If so, the Spamato framework can be accessed by the
add-on without further consideration (such as Mozilla).
Otherwise, Spamato has to be invoked by a mediator in
between (see Local Server in Figure 1); this is the case for
Outlook and Thunderbird. These add-ons communicate
with the mediator using an XML-based scheme while,
subsequently, the mediator translates the requests into
normal Java method calls and vice versa. Apparently,
the second approach is more complex, but the burdens
are constituted by the developers of the email clients.
Spamato eases the implementation of add-ons by pro-
viding the Local Server.

3.2.1 The Spamato Proxy

We also provide the Spamato Proxy in order to use
Spamato with email clients which are not supported by
an add-on yet. The Proxy works similarly as the afore-
mentioned mediator between an email client and the
Spamato system. Additionally, it also relays emails be-
tween an email client and a user’s normal email server
acting as a transparent email server proxy (hence its
name) to the client. In contrast to the mediator, since
no add-on exists, the Proxy can neither be controlled via
buttons for the purpose of gaining feedback for the sys-
tem nor can it directly receive messages from the email
client by a Java method call or in the XML format. In-
stead, the Proxy intercepts each message sent from the
email server and checks if it is spam before forwarding it
to the email client.
More precisely, the IMAP service of the Spamato Proxy
works as follows. All requests from the email client are
first sent to the Proxy. Usually, the requests and their
replies are transparently tunnelled to the real server and
back to the client without intervention. Only Fetch and
Copy commands have to be handled separately: Fetch
commands, which are sent to request a message or its
headers, are intercepted, to screen whether it is spam or
ham. If the message is considered innocent it is deliv-
ered to the client. Otherwise, the message is moved to
a special spam folder on the IMAP server. Copy com-
mands that copy messages from or to the special spam
folder are used to indicate report or revoke attempts. If
a user wants to report an unrecognized spam message to
the Spamato system, the message can be dropped to the
special spam folder. On the other hand, the activity of

Listing 1 The Spamato Base plugin.xml File
<plugin>

<name>Spamato</name>

<description>The Spamato Base</description>

<class>spamato.common.main.SpamatoImpl</class>

<version>0.2</version>

<update-url>

http://spamato.ethz.ch/update

</update-url>

<requires><permission type="all"/></requires>

<share>

<package name="spamato.common"/>

<package name="com.thoughtworks.xstream"/>

<extension-point id="spamato.filters"/>

</share>

</plugin>

moving a message from the spam folder to the Inbox is
regarded as a revoke of this message.
The Proxy also works with POP3 accounts. In this case,
the Proxy adds a header stating the result of the spam
check before forwarding it to the email client. Subse-
quently, the email can be handled by an email client’s
built in filtering facility, for example by moving it to a
special folder or by deleting it immediately. Although
this approach is less sophisticated than our IMAP so-
lution, it works fine with almost any email client and
server.
On POP3 accounts, the Proxy also allows for user feed-
back by providing an SMTP service. It intercepts for-
warded messages from the client sent to a special local
email address either as a spam report or a ham revoke.
Unfortunately, email clients forward messages in differ-
ent ways which makes it difficult to build a single solution
to process them.
Although the Proxy approach is more limited in offering
its services to the user, the configuration of Spamato and
its plug-ins is no problem. The Web Configuration is
operated with a common browser, and does not depend
on the user’s email client.

3.3 Plug-in Mechanism

As stated before, plug-ins are basic building blocks in
the Spamato system. Plug-ins can either be manda-
tory, such as the Spamato Base or the Web Configura-
tion, or optional, like the Sound Player or filters. Plug-
ins can provide their services to other plug-ins. Addi-
tionally, they can communicate with each other using a
publish/subscribe event mechanism. In this section, we
present some of these aspects.

3.3.1 The plugin.xml File

The extract of the plugin.xml shown in Listing 1 de-
scribes the Spamato Base plug-in. The <name> of the
plug-in and the informal <description> are used solely
to describe the plug-in and its purpose. The main

Listing 2 The Earl Grey plugin.xml File
<requires>

<permission type="all"/>

<plugin key="spamato">

<extension point="spamato.filters"

class="...EarlGreyClient/>

</plugin>

<plugin key="web config" name="Configuration">

<extension point="config.web.pages"

handler="...EarlGreyPageHandler" menu="Earl Grey

Filter"/>

</plugin>

</requires>

<class> is initiated when this plug-in is loaded. The
<version> and the <update-url> provide information
to the plug-in mechanism and to the Update Manager
plug-in (if available) to initiate the default plug-ins and,
possibly, to obtain newer versions.
The <requires> section of the XML file specifies re-
quirements on the Spamato framework or other plug-
ins. In this example, the Spamato Base asks the frame-
work for "all" permissions. This allows the Base,
for example, to read from and write to the local hard
disk as well as to connect to arbitrary Internet servers;
more restrictive rules are possible. The <requires> sec-
tion can also contain entries to subscribe for particu-
lar events—for example, the Sound Player subscribes to
the mail.post check event that is published after the
Spamato system has made its final spam decision about
a message—or, as we show later in Listing 2, to hook
into a shared extension point.
The <share> part enables other plug-ins to extend
or use the facilities provided by the sharing plug-
in. The Spamato Base allows other plug-ins to ac-
cess the package spamato.common that contains com-
mon utility classes and the XStream [17] package
com.thoughtworks.xstream which is used to exchange
data among different client and server components. Fur-
thermore, the Spamato Base offers the extension point
spamato.filters which is necessary to register filters.
Listing 2 depicts how the Earl Grey filter (see Sec-
tion 4.1.2 for more details on this filter) registers with
this extension point. In the <requires> section of the
plugin.xml file, the “spamato” plug-in is extended by
specifying the class that has to be accessed for the
spamato.filters extension point. Additionally, the in-
teraction with the Web Configuration is shown. To give
users the ability to adjust the filter’s parameters, the
filter has to hook into the config.web.pages extension
point by registering a handler that creates a configurable
HTML page. This page is displayed when the user selects
the corresponding menu entry that is automatically cre-
ated by the Web Configuration. Apparently, extension
points can define arbitrary parameters and thus obtain
all the information necessary to fulfil their tasks.

3.3.2 Loading Plug-ins

Technically, a plug-in has to implement the Plug-in in-
terface, which is located in the Spamato Core. In ad-
dition, it has to provide a plugin.xml file (see Section
3.3.1) and it must be placed in the plug-ins directory of
the Spamato system either in the form of several class
files or as a single compressed plugin.zip file. A plug-
in that meets these requirements is automatically loaded
by Spamato when it is started or reinitiated, for instance
by the Update Manager after a new version of a plug-in
has been downloaded.
The plugin.xml file characterizes the interaction with
other plug-ins. It has to be parsed in order to add the
plug-in to the Plug-in Container and to arrange its de-
pendencies. It is beyond the scope of this paper to de-
tail all aspects. Still we want to point out the role of
graph-like organized Java ClassLoaders to achieve the
sharing facility of packages and the usage of extension
points. Each plug-in is loaded and instantiated using
its private ClassLoader. Plug-ins sharing packages en-
able other plug-ins to use these “free” classes. On the
other hand, hooking into an extension point entails the
plug-in offering the extension point to call methods of
the extending plug-in. In both cases, one plug-in has to
access the ClassLoader of another plug-in.
We highlight this point not for mere technical reasons
but to emphasize the default state: By default, no plug-
in can use or even knows about classes of other plug-ins;
they are totally shielded in their personal namespaces.
This results in three features. First, developers do not
have to worry about other plug-ins. They can label their
packages without considering problems due to overlap-
ping namespaces although all plug-ins are dynamically
loaded into the same JVM. More precisely, developers
can even prohibit the access to their classes. Second,
the testing and analysis of filters, which are themselves
plug-ins, are facilitated. The same filter can be used
multiple times in one Spamato instance with different
settings just by copying it into different directories in the
plug-ins directory. Thus, it is possible to easily compare
different settings and to improve the filter’s success rate.
Finally, using separate ClassLoaders provides the capa-
bility to update plug-ins without the need for restarting
the whole Spamato system.

3.4 Filtering Process

Spamato is designed to support several filters simulta-
neously. The report and revoke procedures are rather
straightforward implementations; all filters are sequen-
tially notified of the operation and process the message
if necessary. In this section, we describe the task of iden-
tifying spam messages, which demands a more elaborate
approach.
During the filtering process, each filter contributes to the
final evaluation, spam or ham. Figure 2 illustrates how
messages are processed to obtain this decision. Gener-

Spamato Base

Filter 1

PreCheck(msg)

Checkpoint PreCheck
veto(msg) = veto1(msg) || veto2(msg) || … || vetoN(msg)

Filter 2

PreCheck(msg)

Filter N

PreCheck(msg)

veto1(msg) veto2(msg) vetoN(msg)

.

Decision
isSpam(msg) = globalDecision(isSpam1(msg), isSpam2(msg), …, isSpamN(msg))

Post Check

Filter1
Filter2

...

FilterN

msg msg msg

isSpam1(msg) isSpam2(msg) isSpamN(msg)

isSpam(msg)

msg msg msg

Filter 1

Check(msg)

Filter 2

Check(msg)

Filter N

Check(msg)

isSpam(msg)

veto(msg) == true
ignore this msg

.

msg isSpam(msg)

Figure 2: The filtering process consists of five phases.
The overall spam probability of a message is based on
the evaluation of each single filter.

ally, the procedure is triggered if a new message arrives.
Each filter then has the chance to pre-check the mes-
sage in order to denote if the message has to be filtered
at all. Subsequently, the real checks are performed and
their results accumulated to calculate the overall spam
probability. Finally, this result is returned to the user,
and the filters can adapt to the decision in the post-check
stage. We now describe the five phases in more detail.
The first phase (init) is initiated when the Spamato Base
receives a message for which the spam probability has to
be computed. The message is delivered by an email client
add-on or intercepted if the Spamato Proxy is employed.
After that, a PreCheck event is published to notify all
interested plug-ins, especially the filters.
Generally, the purpose of the second phase (pre-check)
is either to check if the message should be prevented
from being filtered or to collect information useful to
more than one filter. For instance, the Earl Grey filter’s
server component sends an email to a user in order to
verify his email address. This specific challenge message
is definitely no spam and, in this phase, the Earl Grey
filter blocks the system from any further processing of
this message.
Normal plug-ins other than filters can also subscribe to
this event. For instance, a plug-in’s task is to decide if

a message was revoked before. If so, it vetoes against
further processing in order to prevent the message from
being filtered out again. It is also possible rather to pre-
process than to pre-check a message. For instance, a
common URL identifying plug-in extracts all URLs in
a message. Afterwards, it provides this information to
all URL-based filters which in turn save the time and
resources to do the same job redundantly.
If any filter vetoes against processing the message in the
second phase, the process stops and the message is clas-
sified as ham. Otherwise, in the third phase (check),
the message is scrutinized and each filter independently
assigns the message a spam probability. In this phase,
filters can also revert to pre-processed information col-
lected in the pre-check phase. Since inspecting a message
is a more complicated procedure than just to pre-check
it, there are no time constraints on this phase. Still it is
desirable to perform the spam check as fast as possible.
In the fourth phase (decision), the overall spam decision
is calculated and sent to the Spamato Base which in turn
forwards it to the user. Subsequently, the email client
add-on or the Spamato Proxy moves the message to the
special spam folder, if it is classified as spam, or leaves
it untouched.
In the fifth and last phase (post-check), all registered
plug-ins are provided with the final decision of the fil-
tering process. The intention here is to enable filters to
adapt to the overall outcome. For instance, in this phase,
we automatically train our Bayesian filter by adjusting
its good/bad token lists. While the plug-ins (filters) op-
erate concurrently in the pre-check and check phase, the
post-check phase is not time critical. Thus filters can
sequentially be notified in order to save resources.

4 Filters

The aim of this chapter is to support our hypotheses that
Spamato is a multi-faceted, extendable, and easy-to-use
filter framework. The success rate of the filtering process
exclusively depends on the quality of its filters. There-
fore, the more filters of different techniques that exist,
the better the overall filtering rate will be. The develop-
ment of five different filters and their employment during
several months of beta-testing shows the capabilities of
Spamato. Developers can solely focus on the realization
of their ideas instead of bothering about how to test and
deploy their filters.
The aim of this chapter is not to claim some excellent re-
sults in the success rate of our filters. It is hard to corrob-
orate such claims with less than 90,000 processed mes-
sages from a dozen users only. Nevertheless, we branded
about 50,000 messages to be spam with a false positive
rate less than 0.5 percent and about 7 percent false neg-
atives.2

2Please note that we are still running a beta-test. We
assume that the real rates are much better as test-cases cur-
rently tamper with the Statistics Engine.

In this chapter, we describe the underlying concepts, the
advantages, and the drawbacks of our filters. The inten-
tion is to encourage developers to build even better ones
or just to try out new ideas on top of the Spamato frame-
work.

4.1 URL filtering

Spammers often advertise their products by referencing
their web sites, which contain more specific information
and, especially, order possibilities. The URL filtering
technique is based on these references. Linked URLs or
domains are extracted from an email in order to check
if they have been blacklisted before. Blacklists, such as
SURBL [18], can either be maintained by a single user
or in a collaborative manner, consolidating the appraise-
ments of possibly millions of participating users in an
open database. URL-based filters are also a first class
approach against phishing attacks since these emails def-
initely contain references to faked web sites. Naturally,
URL-based filters do not work on messages which do not
contain any URL.
It has been shown that spammers obfuscate their domain
links to confuse users and filters and to elude identifica-
tion [19], but this is only an algorithmic problem. So-
phisticated algorithms are even able to cope with phish-
ing attacks based on homographic similarities due to the
support of Internationalized Domain Names.
Another problem emerges from the linking of multiple
domains in an email (we call this a multi-URL message).
Spam messages often contain URLs that are not related
to the spammers’ businesses. We investigated 13750
spam messages and discovered that about 5800 (42.2%)
of them contained more than one URL and about 1000
(7.3%) even referenced ten or more distinct URLs. The
reason for this enrichment of URLs is, for example, that
spammers use images in their messages that are loaded
from different righteous online shops or that they link to
trustworthy sources to affirm their legitimacy. It is also a
common practice to insert fake domains in a spam mes-
sage for the sole purpose of misleading filters. For multi-
domain messages, it is hard to determine the real spam
domain(s) among all listed ones. This section contin-
ues describing three different approaches of URL-based
filtering facing this problem.

4.1.1 Razor Filter (Whiplash)

Vipul’s Razor [13] is a collaborative filter comprising two
different techniques.3 The Whiplash algorithm is URL-
based and is discussed in the following; the hash-based
Ephemeral algorithm is sketched in Section 4.2.3.
We want to emphasize, that we are neither the inventors
nor the maintainers of the Razor network. But to the
best of our knowledge, we have developed the first open-

3Some other techniques have been proposed. But they
are either not open (but part of the commercial Cloudmark
branch) or have been discarded due to high false-positive
rates.

source Java implementation of Vipul’s Razor filter that,
as a part of Spamato, is much easier to employ than its
console-based original written in Perl.
The Whiplash algorithm extracts all URLs from a mes-
sage in order to check if the domains have been black-
listed before. The spam probability of each domain is
evaluated by consulting the Razor network. If any of the
domains is classified as spam, the whole message is clas-
sified as spam, too. We refer to this as the “single-URL”
approach because it is based on the spam probability of
each single domain.
The drawback of this approach is that when reporting
spam messages to the Razor network, also ham domains
probably contained in multi-URL messages are discred-
ited. This means that, for example, a message which
contains a single ham domain that was reported as part
of a multi-URL message before, subsequently, is classi-
fied as spam, too.

4.1.2 Earl Grey Filter

The Earl Grey filter works collaboratively like the Razor
filter. The spam probability of a message is derived from
the global rating of linked domains. The Earl Grey filter
is bundled with a set of components, such as a local
and a global whitelist, to improve the filtering success.
Additionally, a client-based reputation system prevents
malicious users from manipulating the network.
In contrast to Razor’s approach, the Earl Grey filter uses
a “multi-URL” technique. This means that all URLs
of a message are evaluated as a single entity. For this
purpose, each unique domain of a multi-URL message
is hashed (using MD5) and, afterwards, all hash values
are summed up. The resulting fingerprint identifies the
message and is looked up in the Earl Grey network to
acquire its spam probability.
First, it is obvious that for messages which contain only
a single URL both approaches are the same. There is no
difference in evaluating a single domain or the hash of a
single domain.
The Earl Grey filter is immune to the Whiplash problem
described earlier. The fingerprint of a multi-URL mes-
sage which contains one or more ham domains does not
conflict with any other fingerprints derived from mes-
sages containing the same ham domains. But this ap-
proach bares another drawback. Just like messages inter-
spersed with random text chunks paralyze a hash-based
filter, the random insertion of constantly changing fake
domains alters the fingerprint and makes it impossible
for this filter to uniquely identify the message.

4.1.3 Domainator

The initial motivation for the Domainator was to al-
leviate the aforementioned drawbacks. By eliminating
known ham and fake domains before verifying the re-
maining domains by the Razor or Earl Grey filter, their
filter qualities should be improved. But instead of creat-

ing such a pre-checking tool, the Domainator now works
as an independent filter.
The Domainator is a single-URL-based filter which
queries Google’s databases instead of maintaining its
own. The queries sent to Google are twofold: On the one
hand, we determine the number of web pages that refer-
ence the domain. This means, using the web interface of
Google, we would enter something like “ethz.ch” (the do-
main criterion) in the search box and store the number
of results shown in the header line. We are also inter-
ested in the number of web pages found for the domain
and a key word associated with spam (the domain+spam
criterion), such as ‘ethz.ch spam’ or ‘ethz.ch blacklist’.
The idea behind this approach is that spam domains
usually do not last very long and contain only a limited
number of web pages so that Google is unable to index
them. Additionally, most external citations are associ-
ated to spam related topics; several blacklists maintained
by different users contribute to our search. Therefore,
the ratio of both criteria will probably be near to one.
On the other hand, well known ham domains are ex-
pected to result in many hits using the domain criterion
and a low rate for the domain+spam query. Admittedly,
we also have to deal with a few ham domains that have
many hits in the domain+spam query due to their spam
related nature, such as “spamassassin.org.” Depending
on a chosen threshold for the ratio of the spam+domain
to the domain criterion, the false-positive rate can be
adjusted in relation to the number of false-negatives.
To evaluate our assumptions, we have investigated 2276
domains found in messages that have been taken from
the SpamAssassin hard-ham selection [20], actual do-
mains from our Earl Grey database, and collected book-
marks from people using Spamato. We manually divided
them into 781 spam domains, 312 fake domains, 1109
OK domains, and 74 whitelist domains. These cate-
gories have been chosen according to the following crite-
ria: Spam domains are associated with the products ad-
vertised in a message. Fake domains have obviously been
added to a message in order to confuse URL-based fil-
ters (invisible to the user). OK domains are trustworthy,
“good” domains. And whitelist domains are domains of
major companies like “microsoft.com” or “apple.com,”
which have been added to a global whitelist.
Figure 3 shows the result of the evaluation. Fake and OK
domains are rather evenly spread over the whole spec-
trum and whitelisted domains result in numerous hits.
As expected, most spam domains are significantly clus-
tered in an area where other domains are rarely found (a
low number of hits and most of them are spam related).
In conclusion, the Google criteria provides a useful mean
to distinguish between spam and ham domains.

4.2 Other Filtering Techniques
For completeness, in this section, we sketch three filters
that do not follow any of the URL-based approaches de-
scribed in Section 4.1.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8
log(Domain)

lo
g(

D
om

ai
n+

Sp
am

)

spam fake ok whitelist

Figure 3: The evaluation of Domainator queries shows
that spam domains can be distinguished from ham do-
mains.

4.2.1 Bayesianato

The Bayesianato is a näıve Bayesian-based filter imple-
mented according to Paul Graham’s “A Plan for Spam”
[21]. Since this technique is common to many filters and
well-known, we will not describe it in more detail. It
should be remarked, though, that the Bayesianato fil-
ter detects more spam messages than our other filters,
but it has also the highest false-positive rate of all filters
(which is still below 1 percent).

4.2.2 Ruleminator

The Ruleminator is as the name implies a rule-based
filter. It allows to define logic rules, such as “if body
contains ‘sex’ then spam” or “if ‘X-SpamCheck’ header
begins with ‘yes’ then spam.” Thus, it is similar to com-
mon filtering facilities of email clients but works on the
Spamato layer.
An interesting capability is the explicit definition of ham
messages. A built-in rule enables the filter in the pre-
check phase of the filtering process (see Section 3.4 for
details) to veto against further processing of the mes-
sage if the sender of the message has been seen before.
Thus, this filter can establish an automatic whitelisting
of known senders.

4.2.3 Razor Filter (Ephemeral)

The Ephemeral collaborative filter of the Razor system is
hash-based. Small parts of the message body are hashed
and the values (digests) are compared to entries in the
Razor network.
The drawback of this approach is that the insertion of
random text into a message deludes the filter as the cal-
culated hash values are not identical. Still, the combi-
nation of the Ephemeral and the Whiplash (see Section
4.1.1 algorithms, leads to the excellent spam detection
rate of the Razor system.

5 Conclusions

In this paper, we introduced Spamato as a multi-faceted,
extendable, and easy-to-use filter framework. We showed
how users and developers benefit from Spamato. Users
can intuitively employ a single spam filter system in-
tegrated in their email clients. Developers can rely on
a proven development environment to implement, ana-
lyze, and improve their filters without bothering about
their deployment. Spamato is available for download at:
http://www.spamato.net.

Acknowledgements

We thank Michelle Ackermann, Raphael Ackermann,
Remo Meier, Simon Schlachter, Christian Wassmer, An-
dreas Wetzel, and all beta-testers for their contributions
to the Spamato project.

References

[1] MessageLabs. Intelligence Annual Email Security
Report 2004. http://www.messagelabs.com/binaries
/LAB480 endofyear v2.pdf.

[2] The Spamhaus Project. Increasing Spam Threat from
Proxy Hijackers.
www.spamhaus.org/news.lasso?article=156.

[3] Nicola Lugaresi. European Union vs. Spam: A Legal
Response. In Proceedings of the First Conference on
E-mail and Anti-Spam, 2004.

[4] Can-Spam Library. www.canspamlibrary.com.

[5] C. Dwork, A. Goldberg, and M. Naor. On
memory-bound functions for fighting spam. In
Proceedings of Crypto 2003, 2003.

[6] Microsoft. The Penny Black Project.
http://research.microsoft.com/research/sv/PennyBlack.

[7] DomainKeys. http://antispam.yahoo.com/domainkeys.

[8] Sender ID Framework. www.microsoft.com/senderid.

[9] The Spamhaus Project. Jeremy Jaynes Gets 9 Years
for Spamming.
www.spamhaus.org/news.lasso?article=155.

[10] Procmail. www.procmail.org.

[11] SpamAssassin. http://spamassassin.apache.org.

[12] Theo Van Dinter. New and Upcoming Features in
SpamAssassin v3. In Talk at ApacheCon 2004, 2004.

[13] Vipul’s Razor. http://razor.sourceforge.net.

[14] Richard Segal, Jason Crawford, Jeff Kephart, and
Barry Leiba. SpamGuru: An Enterprise Anti-Spam
Filtering System. In Proceedings of the First
Conference on E-mail and Anti-Spam, 2004.

[15] Cloudmark SafetyBar. www.cloudmark.com.

[16] SpamPal. www.spampal.org.

[17] XStream. http://xstream.codehaus.org/.

[18] SURBL - Spam URI Realtime Blocklists.
www.surbl.org.

[19] Ken Schneider. Fighting Spam in Real Time. In
Proceedings of the 2003 Spam Conference, 2003.

[20] SpamAssassin, Public Corpus.
http://spamassassin.apache.org/publiccorpus.

[21] Paul Graham. A Plan for Spam.
www.paulgraham.com/spam.html.

