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Abstract 

Human interaction proofs (HIPs) have become 
commonplace on the internet for protecting 
free online services from abuse by automated 
scripts/bots. They are challenges designed to 
be easily solved by humans, while remaining 
too hard for computers to solve. Reading based 
HIPs comprise a segmentation problem and 
one or more recognition problems. Recent 
studies have shown that computers are better 
at solving the recognition problem than the 
segmentation problem (Chellapilla and 
Simard, 2004; Chellapilla et al, 2005a). 

In this paper we compare human and 
computer single character recognition abilities 
through a sequence of human user studies and 
computer experiments using convolutional 
neural networks. In these experiments, we 
assume that segmentation has been solved and 
the approximate locations of individual HIP 
characters are known. Results show that 
computers are as good as or better than 
humans at single character recognition under 
all commonly used distortion and clutter 
scenarios used in todays HIPs.  

1 Introduction 

Reading-based Human Interaction Proofs1 (HIPs) have 
become commonplace for protecting internet web sites 
against abuse by automated scripts (bots). HIPs are also 
known as Completed Automated Public Turing tests to 
tell Computers and Humans Apart (CAPTCHAs). An 
overview of HIPs can be found in Blum and Baird 
(2002), Chew, M. and Baird (2003), and Von Ahn et al 
(2004). The three most common usages of HIPs on the 
internet are a) when signing up for a free e-mail account 
(Google, Hotmail, Yahoo!, and others), b) when 
accessing some online resource such as buying tickets 
at Ticketmaster.com or executing a whois query at 

                                                           
1 These are also referred to as “Human Interactive Proofs.” The term 
“Human Interaction Proof” is preferred in this paper as it is clearer in 
indicating that these are tests for human interaction. 

Register.com, and c) for protection against denial of 
service attacks (e.g. Ticketmaster.com). 

The best known application of HIPs is in fighting e-
mail spam. On many free email systems, a HIP must be 
solved to create an account. HIPs are designed to be 
difficult for computers to solve but easy for humans. 
So, they effectively impose a cost to create the account 
(a spammer must use his own valuable time, pay for 
someone else’s time, or provide valuable services in 
exchange for solving the HIP.) This initial cost of 
account creation might not be high enough to deter 
spammers (once a spammer gets a free e-mail account 
they can send out spam until their activity is detected 
and their account is shutdown). The initial challenge 
can be accompanied by subsequent HIP challenges that 
must be solved to continue sending free e-mail. The 
cost imposed by the latter approach scales well. Further, 
spam filter analysis, e-mail usage, and other spam 
metrics can be used to tailor how often new HIP 
challenges are presented. Both costs rely on the HIP 
being secure and posing a problem that is difficult for 
today’s computers. Goodman and Rounthwaite (2004) 
present several useful applications of HIP for 
addressing spam problems. 

The most successful HIPs are visual and are reading 
based. Recent studies show that many of these rely on 
character recognition tasks and can be easily broken 
using machine learning (Chellapilla et al, 2004; 
Chellapilla et al, 2005). HIPs that pose a combination 
of segmentation and recognition tasks have been 
suggested to improve their security (Chellapilla et al, 
2004).  

In this paper, we compare human and computer 
recognition abilities in identifying single characters that 
have been segmented from HIPs. Section 2 presents a 
background on the segmentation and recognition 
problems posed by HIPs and reviews previous work in 
determining HIP security and human friendliness. A 
class of character recognition problems modeled using 
the distortions and clutter present in today’s HIPs is 
presented in Section 3. Single character recognition 
experiments used to study human and computer 



recognition are presented in Section 4. Results are 
presented in Section 5 and conclusions are offered in 
Section 6.  

2 Background 

Figure 1 presents several examples of reading based 
HIPs that can be sampled on the internet.  

2.1 Segmentation and Recognition challenges 

Reading-based HIP challenges typically comprise a 
segmentation challenge followed by recognition 
challenges2. Solving the segmentation challenge 
requires the identification of character locations in the 
right order. The random location of characters, 
background textures, foreground and background grids 
or lines, and clutter in the form of arcs make the 
segmentation problem difficult. Image warp 
exacerbates the segmentation problem by reducing the 
effectiveness of preprocessing stages of a segmentation 
algorithm that attempt to estimate and remove the 
background textures and foreground lines, etc. Once 

                                                           
2 Solving a HIP need not require the segmentation and recognition 
problems to be solved separately. Humans very likely solve both 
problems simultaneously. 

character locations are reliably identified (in the right 
order) each of the characters needs to be recognized 
correctly giving rise to the recognition problem. The 
character recognition problem is made difficult through 
changes in scale, rotation, local and global warp, and 
intersecting random arcs.  

2.2 HIP security 

The strength of a HIP (against a computer algorithm) is 
a combination of the strengths of the constituent 
segmentation and recognition problems. Several recent 
efforts have shown that weaknesses in particular HIPs 
can be easily exploited to break them (Mori and Malik, 
2003; Thayananthan et al., 2003; Mov et al., 2004; 
Chellapilla and Simard, 2004). Chellapilla and Simard 
(2004) showed that many of the online HIPs are pure 
recognition tasks that can be easily broken using 
machine learning (in these HIPs the segmentation 
problem is trivial to solve). In light of these results, 
while the recognition challenges still pose a problem, 
the segmentation challenge is more important in 
determining HIP strength.  

3 Single Character Recognition 

The recognition challenges posed by the HIPs are 
specifically designed to fool off-the-shelf OCR systems 
e.g. Scansoft’s OCR and several others (Coates et al, 
2001). These general purpose OCR systems are 
designed for high quality document scans or images and 
are brittle to character warp and degrade rapidly in the 
presence of clutter. On the contrary, one can attempt to 
solve the recognition problem posed by a particular HIP 
by building a custom recognizer using machine 
learning. The custom recognizer is trained on distorted 
characters extracted from HIP samples. This approach 
requires a new recognizer to be built for each HIP type 
(e.g. Yahoo!, Google, Register, MSN, etc). This was 
exactly the approach adopted in (Chellapilla and 
Simard, 2004). Convolutional neural networks were 
used to build recognizers for the Mailblocks, Register, 
Yahoo!, Ticketmaster, and Google HIPs. Very high 
recognition rates (80%-95%) were obtained on these 
HIPs. We note that most of the real-world HIPs are 
designed to ensure a low human error rate.  

When solving the recognition problem, the 
segmentation problem is assumed to be solved, i.e., we 
already know the number of characters in the HIP 
image and their locations. These locations need not be 
exact. Some tolerance is allowed (a few pixels) as a 
certain degree of translation invariance can be expected 
from machine learning based recognizers.  

In this section we present a class of distortions and 
clutter that are designed to mimic those commonly used 
in today’s reading based HIPs (Figure 1). Each 
distortion and clutter is parameterized and can be scaled 

  
Figure 1(a): MSN/Hotmail HIP samples.  

  
Figure 1(b): Register.com HIP samples.  

  
Figure 1(c): Yahoo! HIP samples.  

   

  
Figure 1(d): Ticketmaster HIP samples.  

  

  
Figure 1(e): Google HIP samples.  

Figure 1: HIP samples.  



from very easy (little distortion/clutter) to very difficult 
or unreadable. In this study, to better understand human 
and computer abilities, the difficulty of the recognition 
problem is driven much higher than what would be 
deemed appropriate for use in a real-world HIP.  

3.1 A Class of Character Recognition Problems 

HIP images contain characters. Both computer and 
human ability to read characters from such images is 
dependent on the font size used and the image 
resolution. Clearly, at very low resolutions and font 
sizes the characters become illegible. Further, font size, 
font style (italics, bold, etc), font type (serif, non-serif, 
monospace, etc), the character set used (English, 
upper/lower case) etc all play a role in determining the 
difficulty of the recognition problem. In the interests of 
tractability, in this paper, the following choices were 
made in designing character recognition problems for 
studying human and computer abilities:  

a) only upper case English characters (A-Z) and 
digits (0-9)3 are used 

b) a font size of 30 points is used  

c) HIP images are rendered at 96 dots per inch 
(for humans) 

d) Times New Roman font is used (serif font) 

We believe these choices, though limiting, provide 
sufficient variety to compare and contrast human and 
computer recognition of HIP characters. When 
designing a real-world HIP, each of these choices must 
be carefully evaluated both in terms of their impact on 
HIP security and human friendliness (Chellapilla et al, 
2005b). 

3.2 Character distortions and arc clutter 

Character-based HIPs employ a set of character 
distortions to make them hard for computers. The basic 
character transformations include translation, rotation 
(clockwise or counterclockwise), and scaling. Rotation 
is usually less than 45 degrees to avoid converting a 6 
into a 9, an M into a W or an E etc. Examples of these 
distortions are presented in Figures 2, 3, and 4. The 
parameters characterizing translation are in pixels 
(Figure 3), while those characterizing rotation are in 
degrees (Figure 4). 

 

 
Figure 2: Example of Plain Text  (M7F47VWC) 

 

                                                           
3 Five characters that can be easily confused were discarded. These 
were I, O, Q, 0, and 1. 

 

 

 
Figure 3: Example of Translated Text, levels 10 
(5MS9FVLL), 25 (3R2YAZ9X), and 40 (C7AXBZZR) 

 

 

 

 
Figure 4: Rotated Text at levels 15 (PWVDYLVH), 30 
(B5PYMMLB), and 45 (GSB5776E) 

 
Both computers and humans find HIPs, using these 
three transformations, easy to solve. To increase the 
difficulty of computer-based OCR, we introduce two 
kinds of warp (Deriche, 1990): Global warp and Local 
warp. 

 

=>  
Figure 5: Letter M under global warp. 

 

Global Warp: Global warp produces character-level, 
elastic deformations (Figure 5). It is obtained by 
generating a random displacement field followed by a 
low pass filter with an exponential decay (Deriche, 
1990). The resulting displacement field is then applied 
to the image with interpolation. These appear to bend 
and stretch the given characters. The magnitude of the 
warp is proportional to the total displacement distance 
of HIP image pixels. The purpose of these elastic 
deformations is to foil template matching algorithms.  

 

=>  
Figure 6: Letter M under local warp. 

 
Local Warp: Local warp is intended to produce small 
ripples, waves, and elastic deformations along the 
pixels of the character, i.e., at the scale of the thickness 
of the characters, rather than the scale of the width and 
height of the character (Figure 6). The local warp 
deformations are generated in the same manner as the 
global warp deformations, by changing the low pass 



filter cut-off to a higher frequency. The purpose of the 
local warp is to foil feature-based algorithms which 
may use character thickness or serif features to detect 
and recognize characters. 

Clutter: Crisscrossing straight lines and arcs, 
background textures, and meshes in foreground and 
background colors are common examples of clutter 
used in HIPs. In this paper, we used random foreground 
and background arcs of different thicknesses as clutter. 
Foreground arcs are rendered in the same color as 
characters and are designed to join adjacent HIP 
characters together. Background arcs are rendered in 
the background color and as such are designed to break 
up characters into disconnected pieces. Both foreground 
and background arcs are of constant thickness. Two 
levels of arc thickness were chosen with thin arcs being 
2 pixels wide and thick arcs being 4-5 pixels wide. The 
combination of thin and thick arcs were chosen to 
model the thin and thick portions of characters in the 
Times font. The number of arcs, Narcs, rendered on or 
around the character was determined by the arc density, 
D, using: 

2( / )arcsN ceil WH D S =    (1) 

where W and H are the width and height of the HIP 
image, respectively. S is the font size and ceil is the 
ceiling function. One character HIPs were generated as 
40 pixel x 40 pixel images centered on the character 
being used for recognition. These 40 x 40 character 
images were rendered on a 90x50 HIP image before 
clutter and warp were added. 

4 Method 

We carried out a set of seven experiments to determine 
the recognition rates of humans and computers (the 
neural network classifier) under the above distortions 
and clutter. These were (see Figures 7-13): 

1. Local warp (+baseline1) 
2. Global warp (+baseline1) 
3. Thin arcs (+baseline2) 
4. Thick arcs (+baseline2) 
5. Non-intersecting thick arcs (+baseline2) 
6. Thin background arcs (+baseline2) 
7. Thick background arcs (+baseline2) 

 

All experiments used one of two baseline settings 
(baseline1 or baseline2). In experiments 1 and 2, the 
baseline settings (baseline1) produced random 
translation (-20 to +20 pixels), scaling (-20 to +20 
percent), and rotation (-20 to +20 degrees). The 
baseline setting in experiments 3-7 (baseline2) 
produced a random translation of -20 to +20 pixels, 
random scaling of -20 to +20 percent, a random rotation 
of -20 to +20 degrees. Further, a global warp of 75, and 

a local warp of 20 were also used. The warp value 
indicates the magnitude of the associated warp field and 
is proportional to the average movement of ink pixels in 
the HIP (Deriche, 1990). 

In each experiment, the associated distortion/clutter 
parameter was varied from very easy (small) to very 
difficult (large). To better understand human and 
computer abilities, the range of parameter setting 
studied in this paper is much wider than those that 
would be used when designing real-world HIPs. Figures 
7-13 present several examples of characters used in the 
computer and human user studies. 

4.1 Computer Experiments 

The computer based recognition engine is a 
convolutional neural network (Simard et al, 2003) that 
has been widely used for building single character 
recognizers for document processing. It yielded the best 
known error rate of 0.4% on the MNIST database 
consisting of handwritten digits (0-9). It uses little 
memory, and is very fast for recognition.  

In each experiment, a total of 110,000 random 
characters were sampled using the distortion and clutter 
settings. 90,000 characters were used for training and 
10,000 were used for validation. Test error was 
computed over the remaining 10,000 characters. Thirty 
one characters from {A-Z, 0-9} were chosen. Five 
characters that can be easily confused were discarded. 
These were I, O, Q, 0, and 1. Characters were rendered 
in Times Roman font at a font size of 30 points.  

Distortion and clutter (when present) were added to 
HIPs in the following order a) characters were rendered 
at random locations (with translation and rotation), b) 
clutter was added c) global and local warps were 
applied. 

 

LW 20          

LW 40          

LW 60           

LW 80          
 
Figure 7: Five sample characters for local warp settings 
of 20, 40, 60, and 80. 

 



GW 120           

GW 180           

GW 240           

GW 300           
Figure 8: Five sample characters for global warp 
settings of 20, 40, 60, and 80.  

 

FG 0.5          

FG 1.0          

FG 1.5          

FG 2.0          

FG 2.5          
 

Figure 9: Five sample characters for thin foreground arc 
densities of 0.5, 1.0, 1.5, 2.0, and 2.5. 

 

FGThick 0.5         

FGThick 1.0         

FGThick 1.5         

FGThick 2.0         

FGThick 2.5         
 

Figure 10: Five sample characters for thick foreground 
arc densities of 0.5, 1.0, 1.5, 2.0, and 2.5. 

FG Thick(NI) 0.5          

FG Thick(NI) 1.0          

FG Thick(NI) 1.5          

FG Thick(NI) 2.0          

FG Thick(NI) 2.5          
 
Figure 11: Five sample characters for thick non-
intersecting (TNI) foreground arc densities of 0.5, 1.0, 
1.5, 2.0, and 2.5. 

 

BG 0.5          

BG 1.0          

BG 1.5          

BG 2.0          

BG 2.5          
 

Figure 12: Five sample characters for each background 
arc densities of 0.5, 1.0, 1.5, 2.0, and 2.5. 
 

BG Thick 0.5         

BG Thick 1.0         

BG Thick 1.5         

BG Thick 2.0         

BG Thick 2.5         
 

Figure 13: Five sample characters for each thick 
background arc densities of 0.5, 1.0, 1.5, 2.0, and 2.5. 

4.2 HIP User studies 

We carried out a user study that attempted to closely 
match the computer experiments. The study participants 
were asked to recognize the same distortion conditions 
that were used with the computer recognition. The 
studies were designed to be run electronically, allowing 
participants to do the HIP recognition tasks from the 
comfort of their own offices. 44 users were recruited to 
participate in this set of experiments. All were 
employees at a large software company. Average age of 
the participants was 33.7 (range of 21-58 years of age), 
15 were female, and all had normal or corrected-to-
normal vision. All but thirteen of the participants had at 
least an undergraduate education (though seven 
responded “other” which could have included a PhD). 
Participants were compensated by holding a raffle, with 
one of the participants winning an x-box video game 
console. 

Participants were asked to identify characters in various 
distortion conditions, the same characters that were 
used for computer testing in the above experiments. On 
each screen, participants saw 10 characters per 
condition selected randomly from a set of 100 test 
characters. The conditions were the same as those 



described in the above section. Each character appeared 
within a box, and it was clear that there was only one 
character per box. The participants responded by typing 
their answer into a text field below the character. The 
experiments were self-paced, and the participants 
would move on to the next set of 10 characters 
whenever they were ready. On average participants 
spent 19 seconds to recognize 10 characters. Accuracy 
was defined as the percentage of characters recognized 
correctly. 

5 Results 

The first two experiments investigated single character 
recognition accuracies in the presence of warp. The 
baseline settings (baseline1) produced only translation, 
rotation, and scale variations. Experiments three 
through seven investigate recognition abilities in the 
presence of foreground and background clutter in the 
form of thin and thick arcs. The baseline settings 
(baseline2) produce not only translation, rotation, and 
scaling, but also a small amount of global (75) and local 
warp (20).  

Local warp (experiment 1): The local warp was 
incremented in 4 steps from 20 to 80, as shown in 
Figure 7. The local warp value indicates the magnitude 
of the local warp field and is proportional to the average 
movement of ink pixels in the HIP. The computer and 
human accuracies in the presence of local warp are 
presented in Figure 14. Human participants had a very 
high accuracy rate with levels of local warp up to level 
40, and poor accuracy at level 60 and above. In 
contrast, the computer accuracies start out the same as 
that for humans at a local warp of 20, but stay above 
99.5% up to a local warp of 60. Even at a local warp of 
80, the convolutional neural network is able to 
recognize over 96% of the characters correctly. 
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Figure 14: Human and computer accuracy rates 
(percent) under local warp of 20, 40, 60, and 80. 

Global warp (experiment 2): The global warp was 
increased in 4 incremental steps from 120 to 300, as 
shown in Figure 8. The global warp value indicates the 
magnitude of the global warp field and is proportional 

to the average movement of ink pixels in the HIP. As 
shown in Figure 15, both humans and computers do 
well when the global warp field is less than 200 and 
gradually deteriorate. However, while computers do 
marginally better, both computer and human accuracies 
stay above 85%. 
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Figure 15: Human and computer accuracy rates 
(percent) under global warp at 120, 180, 240, and 300. 

 
Thin arcs (experiment 3): In this condition, HIP 
characters are mixed with clutter in the form of thin 
intersecting arcs. Note that the arcs are rendered 
uniformly over the image and do not necessarily 
intersect the character. However, most do. The arc 
density (Eq. 1) was varied in five steps from 0.5 to 2.5, 
as shown in Figure 9. Human participants had a high 
accuracy rate up to an arc density of 1.5, after which 
human performance deteriorated quickly. However, 
computer accuracies remain high (above 95%) 
throughout the tested arc density range.  
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Figure 16: Human and computer accuracy rates 
(percent) in the presence of thin foreground arcs.  

 
Thick arcs (experiment 4): Figure 17 presents 
recognition accuracies in the presence of thick 
intersecting arcs. The arc density (Eq. 1) was varied in 
five steps from 0.5 to 2.5. Though computer and human 



accuracies are high at an arc density of 0.5, they rapidly 
deteriorate as characters become unrecognizable. 
Computer recognition is better, but also suffers 
significant deterioration with increasing arc density.  
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Figure 17: Human and computer accuracy rates 
(percent) in the presence of thick foreground arcs.  

 
Thick non-intersecting arcs (experiment 5): In this 
condition, HIP characters are mixed with clutter in the 
form of thick arcs. However, unlike the case of thick 
intersecting arcs, these thick arcs do not intersect the 
characters. At best, they can touch the characters in the 
HIP image. The arc density (Eq. 1) was once again 
varied in five steps from 0.5 to 2.5, as shown in Figure 
11. As shown in Figure 18, both humans and computers 
find this scenario quite easy with accuracies never 
straying too far from 100% throughout the arc density 
range. 
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Figure 18: Human and computer accuracy rates 
(percent) in the presence of thick non-intersecting 
foreground arcs.  

Thin background arcs (experiment 6): Unlike the 
foreground arcs that connect neighboring characters (in 
a multi-character HIP), background arcs are designed to 
break up characters in to two or more pieces. The 

background arc density (Eq. 1) was varied in five steps 
from 0.5 to 2.5, as shown in Figure 12. As shown in 
Figure 19, both humans and computers find this 
scenario quite easy and achieve near 100% accuracy 
rates. Computer and human performances are nearly 
indistinguishable.  
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Figure 19: Human and computer accuracy rates 
(percent) in the presence of thin background arcs.  

Thick background arcs (experiment 7): In 
comparison with thin background arcs, thick 
background arcs breakup the characters much more 
rapidly. The arc density (Eq. 1) was varied in five steps 
from 0.5 to 2.5, as shown in Figure 13. As shown in 
Figure 20, both humans and computers rarely make 
errors when the arc density is less than 1.5. As the arc 
density increases past 1.5, human performance drops 
mildly, while computer accuracy remains almost 
unchanged.  
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Figure 20: Human and computer accuracy rates 
(percent) in the presence of thick background arcs.  

In all seven experiments, computers did as well as or 
better than humans at recognizing HIP characters in the 
presence of distortion and clutter. Thin background arcs 
and thick non-intersecting foreground arcs were the 
easiest for both humans and computers. Humans and 



computers did well and achieved near 100% accuracies. 
Thick background arcs and global warp presented low 
to medium difficulty. For low levels, both humans and 
computers did well (near 100% accuracy). With 
increasing difficulty computers did only marginally 
better than humans. Local warp and thin intersecting 
foreground arcs presented moderately challenging 
recognition tasks for both computers and humans. At 
low levels, accuracy was high (above 95%). However, 
with increasing difficulty, while human performance 
degraded significantly, computer performance only 
dropped marginally (less than 5%). Thick foreground 
arcs posed the most difficult problem. Both human and 
computer recognition rates quickly dropped as 
characters became unreadable. However, computers 
still did much better than humans in recognition 
accuracy. As seen in Figure 10, the difficulty of the 
thick intersecting arcs arises from a loss in character 
content. 

6 Conclusion 

The recognition problem posed by HIPs was modeled 
using a sequence of character transformations such as 
translation, rotation, scaling, warp (local and global), 
and clutter (thin and thick foreground and background 
arcs). Using this model, seven experiments were 
designed to assess human and computer abilities in 
solving the recognition problem posed by today’s HIPs. 
User studies were done to assess human accuracy. 
Convolutional neural networks were trained using 
machine learning to recognize characters in each of 
these experiments. Experimental results comparing 
human and computer recognition of HIP characters 
indicate that computers a) do as well as humans on the 
easy problems, b) are marginally better at low and 
medium difficulty scenarios, and c) beat humans at high 
distortion and clutter settings. Overall, the results 
clearly indicate that the recognition problem posed by 
HIPs is easier for computers than humans. In light of 
this new result, HIP strength against computer attacks is 
essentially determined by the strength of the 
segmentation problem. As a result, HIP designers can 
no longer rely on the recognition problem(s) to 
contribute much strength to the HIP. We note that 
several choices made while designing the recognition 
problem also affect the ability to segment a HIP. The 
next generation HIPs must rely on posing a strong 
segmentation problem and leveraging human 
segmentation ability to provide HIP security. 
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