
Throttling Outgoing SPAM for Webmail Services

Zhenyu Zhong

Dept. of Computer Science
University of Georgia

Athens, GA, USA
zhenyu@cs.uga.edu

Kun Huang

Dept. of Computer Science
University of Georgia

Athens, GA, USA
huang@cs.uga.edu

Kang Li

Dept. of Computer Science
University of Georgia

Athens, GA, USA
kangli@cs.uga.edu

Abstract

Spam has become a serious problem of In-
ternet, and the current defense is limited
to the filters deployed at the recipient side.
Little known research has been applied to
reduce the volume of spam messages being
generated. In this paper, we present a sys-
tem that dynamically throttles emails based
on the message content at the email server
provider (ESP) side. The goal of this sys-
tem is to reduce the spam generated by the
ESP while not introducing long delay to le-
gitimate messages. This goal is achieved by
applying spam filters during the email deliv-
ery time and by using filter scores to control
the throttling effect. The throttling effect is
implemented through a computational puzzle
system. We present experiments and results
that show the effectiveness of this anti-spam
system that under state of the art hardware,
we can limit the ability of the spammer even
though he possesses 1000 times as many CPU
resources as the normal sender.

1 Introduction

A large amount of research and industrial efforts have
gone into reducing spam messages. The current prac-
tice is heavily limited to spam filtering at the re-
ceiver side, but this practice neglects a serious fact
that all spam traffic consumes unnecessary internet
bandwidth. Also analyzing those huge amounts of
spam overloads the receiving mail server. Since send-
ing spam from ESP is a substantial source of spam
emails, ESPs suffer when their IP addresses get added
onto blacklists [1, 2]. Also complaints from the recipi-
ents not only hurts the ESP’s reputation, but handling
them consumes expensive human support efforts.

This paper addresses the issue of solving those prob-
lems by reducing spam messages generated from the
ESPs, mostly in forms of webmail services (e.g. Hot-
mail, Yahoo, and 163.com). The contributions of this
work are: 1) we push the spam filter to the early stage

of the email delivery time, and 2) we combine the spam

filter with the computational cost approach and dynam-

ically assign costs to the senders.

By pushing the spam filter to the early stage, we can
reduce outgoing spam from ESP side and decrease the
bandwidth usage in the Internet. Consequently this
alleviates the burden on the receiving mail server.

But naively pushing the spam filter earlier at the ESP
side is not acceptable, because the ESP would not like
to take the responsibility of blocking the suspicious
messages. In addition, lack of recipient’s preference
makes the sender more vulnerable to the false posi-
tives.

To address this, we propose a novel mechanism that
reduces an ESP’s outgoing spam by adaptively assign-
ing computational costs to the senders based on their
behaviors and the quality of their message content an-
alyzed by the spam filter at the email delivery time.
We define the quality of an email as the likeliness of
that message being accepted by the recipient as a use-
ful message. Cost-based approaches, such as compu-
tational puzzles, have been proposed as a general anti-
abuse approach. However, recent research [3] showed
that a static cost approach that assigns a constant cost
to every email failed to prevent spam. In a similar work
by Goodman [4], he discussed solutions to outgoing
spam from an economic perspective and designed sys-
tems by challenging in the initial period.

Our work is different from previous outgoing SPAM
controls in that we challenge each message and over-
come the problem of challenges with constant cost.
Our approach does not rely on the precise knowledge
of which email is spam. We use the spam filter to
estimate the quality of a message. The email filter

SMTP

ESP
Mail Server

Recipients
Mail Server

MS MS

 Sender
(ESP Client)

SR

 Recipients

SMTP/HTTP
/WebDAV

PoP3/IMAP
/HTTP/WebDAV

Figure 1: Protocols for Delivering one Email

has to be score-based (like most of the Bayesian fil-
ters), and it would produce a spam likelihood score,
not a zero-one decision. We choose to delay emails
with computational puzzles, and the puzzle difficulty
level is based on the filter score. With this approach,
users sending low quality messages would be assigned
a high computational cost puzzle.

To demonstrate this approach, we integrate this adap-
tive control and a computational puzzle system into
the ESP email delivery system. In today’s Internet,
delivering one email typically involves multiple proto-
cols. Figure 1 shows the popular protocols used to-
day. Because webmail is the most popular form of
email interface for most ESPs, we apply this approach
to the webmail interface, including mail systems that
use HTTP Post and those with Web-based Distributed
Authoring and Versioning (WebDAV) [5].

The rest of the paper is organized as follows: Section
2 reviews the existing work on anti-spam, including ef-
forts at both the recipient and sender side. Section 3
presents our approach in detail within the context of
a Web-based email service. We evaluate the approach
with emulations. Section 4 presents the emulation re-
sults, and finally Section 5 concludes this paper.

2 Related Work

Anti-spam is a very active area of research, and re-
cently many anti-spam techniques have been pro-
duced. We classify them into two categories: spam
filters and cost based approaches. This section first
reviews these two categories and then discusses some
existing practices for controlling outbound spam at the
ESP side.

2.1 Spam Filters

Most of the current anti-spam research focuses on
spam filters. Various forms of filters, such as white-
lists, black-lists [1, 2], and content-based filters [6]
are widely used to defend against spam. White-list
based filters only accept emails from known addresses.
Black-list filters block emails from addresses known
to send out spam. Content-based filters make estima-
tions of spam likelihood based on the text of that email
message and filter messages based on a pre-selected
likelihood threshold. For example, the famous filter

from Paul Graham [6] assigns a likelihood value to each
word or phrase based on its history of use in spam and
takes the average as the overall spam-likelihood for the
message.

Unfortunately all types of spam filters have false posi-
tives, with which legitimate messages are misclassified
and get lost. Another problem with spam filters is that
it can only filter a message after it has already been
delivered and stored in the receiver’s mail server.

The approach presented in this paper also uses spam
filters, but for a different purpose – not filtering mes-
sages, but estimating their “quality”. The quality of
the information is then used for selectively delaying
messages. Thus a misclassification would only cause
a small delay to a message, and the impact of a false
positive would be much less severe than the method
of dropping messages. This approach is applied at the
sender side to reduce outgoing spam, thus it can be
used as a complementary technique for the current fil-
tering methods at the recipient side.

2.2 Cost-based Approach

A cost-based approach is the most promising general
solution for resisting network abuse, such as spam [7, 8]
and network DoS attacks [9, 10]. Cost takes many
forms, such as monetary payments [11], “hashcash”
[12], and computational puzzles [13]. By requiring the
remote peer to consume some computational resources
before granting the service, the protected side can re-
duce the risk of network abuse.

The most famous adoption of the cost approach
is probably the challenge-response anti-spam scheme
[14]. It has been used by Earthlink and a few other
ESPs to filter incoming messages. With this scheme, a
mail server automatically returns a challenge message
which requires the client to perform a task, such as
reading a picture, before it will deliver the message to
the final recipient.

Dwork and Naor [13] proposed a general mechanism
that requires a sender to compute a moderately hard
pricing function or cryptographic puzzle for each mes-
sage; the cost to compute the pricing function is negli-
gible for normal users, but high for mass mailers. Re-
cently, the use of cost-based approaches [7, 8, 15, 16]
mostly address server resource exhaustion.

2.3 Previous Work on Outgoing Spam

Reverse turing test is one well-known cost approach
that has been widely adopted by many ESPs to re-
duce spam. In this approach, users are required to
pass a simple test (e.g. reading text strings from a
picture) before getting an account. Some ESPs (e.g

mail.sina.com) even move a step further and require a
reverse turing test before sending any email messages.

A recent work by Goodman et. al. [4] shows that
the sign up cost of the reverse turing test is not large
enough to deter spammers, and they propose an alter-
native that periodically imposes costs on senders only
at the early signing up stage. Goodman et. al. shows
that these costs at the initial stage is enough to de-
ter spammers, thus reducing outbound spam messages
for the ESP. Also Clayton[17] proposes to find spam
senders by inspecting ISP logs. We can combine this
log information with the throttling control proposed in
this work by providing additional input information.
Besides, rate limiting [18] is not a new idea, and it has
been applied to emails. Our approach differs from pre-
vious works in that we provide an automatic control
that drives the throttling effect rather than choosing
a fixed throttling level.

Our approach in this paper requires no human inter-
action for either tracking the senders or assigning and
solving reverse turing tests. Instead, it automatically
assigns computational costs based on two factors, the
individual email quality and the overall outgoing mes-
sages quality.

2.4 Dynamic Cost Control

While the possibility of adding delay and cost to
abusers has been considered previously in works such
as teergrubing [19] and tarpit [20], the works are lim-
ited to the recipient side. In our previous paper [21],
we studied the effects of introducing cost at the net-
work transport layer on the email recipient side. The
work presented in this paper is similar to our previ-
ous work in the sense of selectively applying cost. The
difference is that our previous work is purely recipient
centered and requires a considerably large deployment
to be effective. The work in this paper is completely
on the sender side, and because all the users have to
be authenticated by ESPs and therefore use their pro-
prietary process to forward messages, it is easier to
deploy.

3 Our Approach

This section presents our approach of adaptively re-
ducing outgoing spam on the ESP side. We first review
the current email relaying practice of ESPs, and then
we explain how to build the cost mechanism into the
ESP message relaying process. Finally we present our
adaptive cost assigning system that selectively adds
cost to users.

Sender
(ESP Client)

Receiver
(ESP Server)

SMTP
HTTP

(with WebDAV)

HTTP Propfind

HTTP 200 OK

Connection Termination

User Authentication
in a separate connection

HTTP WebDAV
Privilege Control

SMTP DATA

SMTP 250 OK,
MSG Accepted for Delivery

Connection Termination

Connection Setup

SMTP Helo, Mail From
Rcpt To etc.

DATA end
(CRLF.CRLF)

Sender
(ESP Client)

Receiver
(ESP Server)

Folder Information
MailSend URL etc.

HTTP Post
Mail Hdr
Body

Computational
Puzzle

 Puzzle
 Answer

Computational
Puzzle

 Puzzle
 Answer

Figure 2: ESP Mail Protocols with Cost Mechanisms

3.1 ESP Email Delivery Protocol

To our knowledge, the current practice is limited
to the following protocols: (1)SMTP, (2)HTTP, and
(3)HTTP with WebDAV. The latter two are more pop-
ular for web based ESP service (used by Hotmail, ya-
hoo, mail.sina, etc) because they provide identifica-
tions to the ESP. When HTTP is used, messages are
delivered to the server with the HTTP Post command.
WebDAV is an extension of HTTP that is designed to
enable multiple users to manage and modify the files
in a remote system. With WebDAV enabled clients,
users can view, open, edit, and save files directly into
the filesystem of the website as if it was a local system.
Since email data are still delivered through HTTP Post
command, we present the mail client with WebDAV in
the same way as the client purely using HTTP.

3.2 Cost Mechanism

The goal of this work is to integrate the cost ap-
proaches into these systems and show that putting
spam filters at an early stage of email delivery can
help reduce the spam from the sender. With the cost
mechanism, the server would be able to assign a com-
putational task to the client with a controllable diffi-
culty. The server would then verify the computational
results before accepting the messages for forwarding.
The cost mechanism has to be robust, tamper resis-
tant, and efficient. Many existing studies [7, 8] have
addressed these issues and designed algorithms for this
task. We are not going to repeat this task. Instead,
we focus on how to combine them with spam filters.

We picked a simple computational puzzle algorithm for
our system. In this algorithm, when a sender makes a

connection and delivers a message to the ESP server,
the server randomly generates a string for this con-
nection, calculates and saves the MD5 hash output,
and sends the hash output back to the sender (the
ESP client). The email sender is asked to search for
a string that has the same hash output and send back
the string as the answer. The server controls the puz-
zle complexity by controlling the string length and the
search space size.

Since we want to determine the computational com-
plexity based on the message content, the server can
only generate the computational puzzle after the mes-
sage arrives and passes through our spam filters (to
get a quality estimation).

Figure 2 illustrates where the computational mecha-
nism is inserted into the original email delivery process
for the two protocols, SMTP and HTTP, respectively.
When the client uses SMTP to forward messages to the
ESP server, the client’s SMTP agent has to be mod-
ified. When SMTP is used, and ESP has no control
over which SMTP client a user adopts, then adding
this mechanism would be considerably harder than the
HTTP or HTTP with WebDAV cases. For the later
case, the client side software is embedded in the web
interface, which can be easily modified by the ESP
server to add this cost mechanism, by using a client
side script.

Notice that the ESP server has to enforce this mecha-
nism in the sense that if a sender failed to supply the
result of the computational puzzle associated with a
message, the ESP would refuse to forward the mes-
sage.

Because the ESP can also associate each email deliv-
ery attempt with a user account, the ESP can also ap-
ply more advanced cost control based on the account’s
overall behavior. For example, cost could be doubled
if many email bounces happen, which is a good indi-
cation of sending unsolicited messages.

Penalties could also be used when a client refuses
to send back answers but keeps making delivery at-
tempts.

3.3 Selective Cost Assignment

With the knowledge of where in the delivery process we
assign the cost, this subsection describes the algorithm
of assigning puzzle difficulty.

We chose two guidelines for the difficulty assignment.
First, we would like to assign no computational cost
to every connection if the spam messages are very rare
overall. Second, we would like to assign no or negligible
computational cost to good email messages even when
the overall spam volume is high.

To achieve this goal, we design a two level adaptation
system in which an email connection’s cost is assigned
based on a product C(m) = Q× q(m), in which C(m)
is the cost level for a message m, and Q is the overall
average message quality level measured over a recent
history, and its value is between 0 (low spam ratio)
and 1 (high spam ratio), and q(m) is the quality mea-
surement for this individual message with a value also
ranging from 0 to 1.

Both the overall and the individual message quality
measurements are made by a spam filter. Although
spam filters can’t judge the spamminess of a message
with a 100 percent accuracy, the average score over
many messages gives a good indication of the spam-
and-non-spam ratio.

We choose a Bayesian based spam filter called QSF
(quick spam filter) [22] for the message quality estima-
tion at the ESP mail server side. QSF is a lightweight
statistical spam filter written in C. In QSF, an overall
score is calculated to find out whether the email should
be considered spam or not. An evaluation of QSF by a
third party shows its filtering precision is 99.1% with
a 0.27% false negative and a 0.02% false positive rate.
[23]

With this approach, there is still a large design space
for choosing an adaptation algorithm. A few issues
need to be addressed including over how long a period
should the average quality measurements be made,
how responsive should the system be towards message
quality changes, and how much we adjust the cost each
time we sense the quality changes.

We ended up choosing one proportional control algo-
rithm, in which the cost level is assigned with the fol-
lowing equation:

• If S − Sm > 0, Q = P × (S − Sm)i

• If S − Sm <= 0, Q = 0

Q is the cost we want to calculate, S is the average
email score over recent period of time, we update the
S periodically, Sm is the mean score value of the good
emails from QSF training set. We calculate the dis-
tance between the S and Sm, and we raise this distance
to the power of i, so that when the quality of emails
are low, the score will be most likely high, and sender
will get more punishment for those low quality emails.
P is a multiplier used to map the value into the puzzle
generator’s input range.

Even with this algorithm, there are several challenges
towards achieving this goal. We need to make the false
positive impact as tiny as possible when the spam filter
makes a low quality estimation for a good mail. We

NistNet

ESP
Mail ServerRecipients

R MS

Normal
Senders

S

Spammers

S

Internet

Figure 3: Emulation Topology

also need to avoid high processing overhead, so that
the ESP server can still support a large number of
accounts.

To address this limit, we set an upper bound to the
cost level, so that even the maximum cost level would
not cause a connection to delay more than 5 minutes.
This number is estimated assuming the same level of
computational power as our experiment machine at
the ESP client side.

People have concerns that applying cost proportion-
ally to the amount of messages might affect legitimate
bulk email senders, such as Amazon and eBay. How-
ever, legitimate bulk email senders have motivations
to identify themselves with the ESP so that they can
be put on the white-list to avoid these computational
cost. Furthermore, the cost is not only related to the
message volume, but also the message quality. The
aggregate cost for a large volume of good quality mes-
sages is still low.

4 Evaluation

This section presents an evaluation of our adaptive
throttling system at the ESP. We first present the ex-
periment methodology, including the experiment setup
and the metrics we used to evaluate the system. Then
we present the empirical results for both with and
without the adaptive throttling system.

4.1 Evaluation Methodology

We evaluate the adaptive throttling approach through
emulation. In the emulation, we setup a modified send-
mail server as the ESP mail server, which accepts email
from users through a webmail interface.

Figure 3 illustrates the topology used in our experi-
ments. All the machines in the systems are 2.6GHz
Dell PCs, running Linux 2.4.23, and they are con-
nected through a 100Mbps switches.

The mail server is supposed to forward messages to the
Internet. Since we only care about the quality of the
outgoing email messages, we forward all the messages
to /dev/null.

We use two machines to emulate normal senders and

QSF Score Distribution

0.01 0.01 0.09

92.69

36.88

54.60

7.65

0.02
2.591.021.28 1.650.46

0.21 0.01 0.000.010.040.09

0.71

0.00

50.00

100.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Score(spam likelihood)

P
er

ce
n

ta
g

e(
%

)

spam

non spam

Figure 4: Email Score Distribution (The number with
underline is the spam’s percentage number.)

spammers. Both machines connect to the email server
through a NIST Net router that emulates the network
between the clients and the ESP mail server.

Because we are emulating many senders using a single
machine, in our emulation, the cost of a computational
puzzle given to the sender is reduced proportionally.
A similar arrangement happens at the spammer side.
The resource ratio is controlled with a parameter, and
results of different ratios are presented in the next sub-
sections. The cost mechanism is based on a MD-5
based client puzzle system described in the previous
section.

We use real email messages (38591 non spam messages,
and 18800 spam messages) obtained from the Internet
for the experiments. The source of the non-spam mes-
sages are obtained from several mailing-lists, including
the well-known end-to-end [24] and perl monger [25].
The spam messages are obtained from the spamarchive
[26] for the archived messages from Mar 19, 2004 to
Sep 14, 2004. The distribution of the email scores
used in our experiments is illustrated in Figure 4.

To play like a spammer, we mapped the mail queue
to the ramdisk, and also turned off the mail log. To
remove the overhead of the disk i/o, we also redirect
unnecessary output to /dev/null.

In our evaluation, we consider two possible spammer
strategies. One is with a best effort approach, in which
spammers keep sending as long as they have resources
regardless of the cost the ESP assigned to them. The
other strategy assume the spammers adapt their be-
havior based on the cost and only try to send messages
when the cost is low. If an attempt to send leads to a
high cost, the spammer abandons it immediately with-
out devoting any resources.

To evaluate the effectiveness of the throttling system,
we chose to measure three metrics: the spam ratio, the

goodput and the normal email delay.

The spam ratio is the percent of outgoing messages
that are spam. We expect an ESP’s outgoing mes-
sages have a low spam ratio, so that the ESP will not
get onto black-lists or receive complaints. However,
the spam ratio is not the only metric that concerns
an ESP. The ESP should not drop all the messages,
It has to keep a high throughput for legitimate mes-
sages. Therefore, we look at a second metric: the
goodput. The goodput is the non-spam email through-
put. We expect an effective control system can keep
high goodput even with many spam attempts. We also
measure the normal email delay in relaying the mes-
sages from the webmail interface to the mail server.
Here the delay is measured by logging the connection
initiation time and the time when the server accepts
the message for delivery. The delay is the time differ-
ence between the two, which includes the time spent
in generating and solving the computational puzzle.
We measure both average delay and the worst delay
for non-spam messages. Ideally, an effective anti-spam
system should introduce very low delay to non-spam
messages.

4.2 Effectiveness

As a reference to measure the effectiveness of this out-
going spam control, we first measure the overall spam
ratio, the goodput, and the delay behaviors of normal
emails.

We run a server with both emulated normal users and
spammers. We further assume that the server sup-
ports 100,000 users, and each user in average sends
five emails a day. This number was obtained from a
recent study on a British ESP [3]. Our own measure-
ment over a nation wide ESP shows a similar rate. We
control the normal email rate according to this aver-
age, and we emulate a spammer that sends emails in
a best-effort way. In our measurements, we found the
CPU is the bottleneck for email senders, rather than
memory or bandwidth. With the best-effort strategy,
the spammer automatically accept the whatever cost
assigned from the ESP. We vary the spammer’s CPU
resources to show its impact to the spam ratio and the
goodput and delay for normal messages. This result
is presented in Figure 5. In this result, the spam-
mer’s CPU resources are represented by its ratio to
the normal users’ average computational power. Typ-
ically the ratio is around 1, meaning that spammer
uses a similar powerful machine as a normal user does.
We consider the typical ratio range is between 0.1 and
10. The ratio is increased when spammer has a top-
of-the-line system, or compromises a good number of
zombie machines for sending emails. So we also con-
sider some larger ratio to represent this scenario. The

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000

E
m

ai
l T

hr
ou

gh
pu

t #
of

 e
m

ai
ls

 /
m

in

CPU Resource Ratio spam vs. non-spam

non-spam no control
spam no control
spam best effort

Figure 5: Throughput with best-effort spammers

Table 1: Delay for the normal messages with best-
effort spammers (SD: Standard Deviation)

Resource Ratio Average Delay(sec) SD
0.1 0.56 1.46
1 0.85 3.51
10 2.43 6.66
100 6.9 10.63
1000 28.33 17.22

result indicates that when the spam volume increases
proportionally with the spammer’s resources (without
requiring very powerful systems) the spam volume can
bypass that of normal email messages (which is the
goodput). The spam volume stops increasing once the
email rate is high enough to hit the server’s maximum
throughput. Under this situation, the majority of mes-
sages are spam. Arguably, the Internet email system is
getting close to this situation, given reports that more
than 50 percent of Internet messages are spam.

Now we look at email throughput as well as delay when
the ESP uses our adaptive cost control algorithms. In
this section, we assumed all the senders automatically
accept the cost assigned from the ESP. We expected
the spammers would suffer with the high cost assigned
to them because most of their messages would have
a high spam score. Certainly spammers could choose
to abandon some connections to avoid high computa-
tional costs and optimize their throughput. We discuss
this situation in the next subsection.

Figure 5 shows the resulting throughput for various
spam resource amounts. Overall, the spam ratio is
decreased after we apply our control system. For ex-
ample, when the spammer has the same CPU resource
as normal user, the spam ratio before control is 0.81,
it drops down to 0.09 after we use the control sys-

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000

E
m

ai
l T

hr
ou

gh
pu

t #
of

 e
m

ai
ls

 /
m

in

CPU Resource Ratio spam vs. non-spam

non-spam no control
spam no control
spam best effort

spam T=1k
spam T=256

spam T=32
spam T=0

Figure 6: Throughput with “smart” spammers

Table 2: Delay for the normal emails with “smart”
spammers (SD: Standard Deviation)

Resource Ratio Average Delay(sec) SD
0.1 2.97 6.01
1 4.35 8.05
10 9.15 12.89
100 13.69 14.03
1000 29.49 18.07

tem. This benefit of a lower spam ratio and a higher
goodput comes with a small impact to normal emails:
the per email delay could increase. To quantify this
impact, we present the measured normal email delay
result in Table 1, including both average delay and
standard deviation of the average delay. The result is
that most of the messages have very low delay when
the spammer’s resources are low or comparable to a
normal user’s resources. The delay increases when the
spammer’s resources get higher. However, the average
delay is still within tens of seconds. The worst delay
to legitimate emails are controlled below the maximum
cost level which is 5 minutes. This time interval has
been commonly used in the email delivery for timeout
value, such as the SMTP commands.

4.3 Smart Spammer

In this section, we consider a “smart” spammer, who
selectively chooses to accept the ESP’s cost assignment
in order to send messages or chooses to abandon the
messages when the cost is too high.

In this evaluation, we did not define the smartest
strategy for spammers. Instead, we tried a range of
spammer strategies, and studied the outcome of the
spammer’s throughput. A common aspect of these
strategies was that the spammer chose to send only

when the cost assigned from the ESP was below a
threshold. In our evaluation, we tried static thresh-
olds and also thresholds adjusted based on the sender
side resources. The thresholds tried in our exper-
iments include (1)threshold = 0, which means the
spammer only sends message when the cost is zero.
(2) threshold = infinity, which means the spammers
always accepts and solves the computational puzzle re-
gardless of the complexity level. Essentially it is the
same as the best-effort. (3) threshold = T , the spam-
mer only sends messages when the cost is below T, and
abandons the connection for an assigned cost higher
than T. We exponentially tried several T, as shown in
Figure 6, the throughputs of different T didn’t make
much difference, but the per email average delay will
be higher when the spammer choose a higher through-
put.

The result of the email throughput is presented in Fig-
ure 6, and the normal email delay whose T equals to
1k is presented in Table 2. The resulting spammer
throughput for all the thresholds we chose are all be-
low the normal email throughput for various spammer
resource setups. And to achieve a high spam through-
put, no matter which threshold a spammer chooses, he
inevitably has to increase his computation capacity.
This will definitely limit the ability of the spammer
to abuse the email system with limited computation
resources. And in this measurement, the spam ratio
also decreased after we apply our control system in
overall. For example, when the spammer has the same
CPU resource as normal user, the spam ratio decreases
from 0.81 to below 0.22 under different thresholds we
attempt.

In regard to the delay result, with smart spammer
strategies the delay result for normal emails is only
a few seconds longer than the case with best-effort
spammers. Although this result does not necessarily
show the highest possible throughput for a spammer,
it does show that the spammer cannot achieve a very
high throughput using only a simple strategy.

The above results only cover a special group of spam-
mer’s strategies. Another interesting strategy for
spammers is to send non-spam along with spam mes-
sages. With the hope of bringing up the overall quality
and keeping our control system assigning low compu-
tational cost, the spammer might get a good amount
of spams out. One way to address this problem is to
keep an absolute counter for emails that have a filter
score high enough, and take this into account when
calculating the overall quality of emails, rather than
only using average filter score. Certainly, investigat-
ing the best available strategy for spammers deserves
more study, and we plan to pursue this in our future
work.

5 Conclusion

A web-based email service is the most popular inter-
face used by the existing email service providers. In
this paper, we presented an anti-spam system for ESPs
in order to reduce spam messages originating from
them. The system dynamically assigns costs based on
the estimated quality of the messages, and the quality
is derived from scores produced by a spam filter. Ex-
periments show that by dynamically assigning the cost
based on the message quality, the system slows down
spammers but assigns zero (or little cost) to the nor-
mal messages because they tend to have high quality.
The majority of normal messages belong to this cat-
egory. Misclassified messages (false positives) would
not be dropped but only incur slight delay.

Acknowledgment

We would like to thank Aura Morris, Bradley J. Wim-
pey, Barry Rountree, Rebekah Black for their reviews
and suggestions for the paper, and Shifeng Chen for
providing ESP measurement data.

References

[1] Philip Jacob. The Spam Problem: Moving Beyond
RBSs, 2003. http://theory.whirlycott.com/rbl.

[2] Michelle Delio. Not All Asian E-Mail is Spam. In
Wired News, Feb 19 2002.

[3] Ben Laurie and Richard Clayton. ”proof-of-work”
proves not to work. In Proceedings of the Third An-
nual Workshop on Economics and Information Secu-
rity (WEIS04), May 2004.

[4] Joshua T. Goodman and Robert Rounthwaite. Stop-
ping outgoing spam. In Proceedings of the 5th
ACM conference on Electronic commerce, pages 30–
39. ACM Press, 2004.

[5] Paul Festa. Microsoft anti-spam campaign hypocriti-
cal. available at http://news.zdnet.co.uk/business/.

[6] Paul Graham. A Plan for Spam, 2003. http://
spamconference.org.

[7] A. Juels and J. Brainard. Client Puzzles: A Cryp-
tographic Defense Against Connection Depletion. In
NDSS, pages 151–165, 1999.

[8] D. Dean and A. Stubblefield. Using Client Puzzles
to Protect TLS. In 10th Annual USENIX Security
Symposium, 2001.

[9] F. Kargl, J. Maier, and M. Weber. Protecting Web
Servers from Distributed Denial of Service Attacks. In
World Wide Web, pages 514–524, 2001.

[10] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash
Crowds and Denial of Service Attacks: Characteriza-
tion and Implications for CDNs and Web Sites. In In-
ternational World Wide Web Conference, pages 252–
262, May 2002.

[11] D. Mankins, R. Krishnan, C. Boyd, J. Zaho, and
M. Frentz. Mitigating Distributed Denial of Service
Attacks with Dynamic Resource Pricing. In Proceed-
ings of Annual Computer Security Applications Con-
ference (ACSAC 2001), 2001.

[12] A. Back. Hashcash: A Denial of Service Counter-
Measure. Technical report, Cypherspace, Au-
gust 2002. http://cypherspace.org/hashcash/
hashcash.pdf.

[13] C. Dwork and M. Naor. Pricing via Processing or
Combatting Junk Mail. In Crypto, August 1992.

[14] Jonathan Krim. ’challenge-response’ technology re-
jects messages unless senders are cleared by recipients.
Washington Post News article, May 7, 2003.

[15] T. Aura, P. Nikander, and J. Leiwo. DoS-Resistant
Authentication with Client Puzzles. Lecture Notes in
Computer Science, 2133, 2001.

[16] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. Wallach. Security for Peer-to-Peer Routing Over-
lays. In Proceedings of OSDI, December 2002.

[17] Richard Clayton. Stopping Spam by Extrusion De-
tection. In Proceedings of the First Email and SPAM
conference, July 2004.

[18] Hotmail sets email limits. http://news.zdnet.co.
uk/business/0,39020645,2132358,00.htm.

[19] Axel Zinser. Teergrubing. http://iksjena.de/
mitarb/lutz/usenet/teergrube.

[20] Marty Lamb. Using statistics to cause spammers pain.
http://www.martiansoftware.com.

[21] Kang Li, Calton Pu, and Mustaque Ahamad. Resist-
ing SPAM Delivery by TCP Damping. In Proceedings
of the First Email and SPAM conference, July 2004.

[22] Andrew Wood. Quick spam filter. available at
http://freshmeat.net/projects/qsf/.

[23] Sam Holden. Spam filter evaluations. available at
http://sam.holden.id.au/writings/spam2/.

[24] The end2end-interest archives. available at
http://www.postel.org/pipermail/end2end-interest/.

[25] Perl monger mailinglist. available at
http://mail.pm.org/archives/classiccity-pm/.

[26] Paul Judge. The spam archive. available at
http://www.spamarchive.org.

