

SMTP Path Analysis

Barry Leiba

IBM Research

Hawthorne, NY
leiba@watson.ibm.com

Joel Ossher

Cornell University

Ithaca, NY
jpo5@cornell.edu

V. T. Rajan

IBM Research

Hawthorne, NY
vtrajan@us.ibm.com

Richard Segal

IBM Research

Hawthorne, NY
rsegal@us.ibm.com

Mark Wegman

IBM Research

Hawthorne, NY
wegman@us.ibm.com

Abstract

Most proponents of domain authentication
suggest combining domain authentication with
reputation services. This paper presents a new
learning algorithm for learning the reputation
of email domains and IP addresses based on
analyzing the paths used to transmit known
spam and known good mail. The result is an
effective algorithm providing the reputation
information needed to combine with domain
authentication to make filtering decisions.
This algorithm achieves many of the benefits
offered by domain-authentication systems,
black-list services, and white-list services
provide without any infrastructure costs or
rollout requirements.

1 Introduction

Mechanisms to validate the sending domain of an email
message are becoming popular, standardized, and hotly
debated. The goals of SPF (Lentczner and Wong,
2004; Wong and Schlitt, 2004), Caller-ID (expired
proposal), and Sender-ID (Lyon and Wong, 2004;
Lyon, 2004) are basically the same: they are each
designed to prevent “spoofing” by making it possible
for domain owners to publish a list of valid outgoing
email servers. Messages that pass one of these tests can
be reliably associated with a domain that participated in
the delivery of the message

1
. However, this

information is not sufficient to filter spam. In addition
to knowing a responsible domain, spam filtering
requires information about what domains send spam.
Most proponents of domain authentication therefore
suggest combining domain authentication with
reputation services.

1 …for some value of “reliably” that is the subject of much debate and

controversy. “Plausibly” might be a better characterization, as these

techniques are meant to be “best effort” validations.

This paper presents a new learning algorithm for
learning the reputation of email domains and IP
addresses based on analyzing the paths used to transmit
known spam and known good mail. This information is
combined with a novel algorithm for filtering spoofed
mail headers to ensure that spammers cannot
circumvent the analysis. The result is an effective
algorithm providing the reputation information needed
to combine with domain authentication to make
filtering decisions.

Interestingly, analysis of this algorithm suggests that
some or most of the benefits that domain-authentication
systems, black-list services, and white-list services
provide can be achieved using local learning without
the need for extensive adoption of domain-
authentications or the costs of third-party black and
white list services.

The algorithm we describe uses only the IP addresses
mentioned in the standard “received” lines from the
headers of an email message (Klensin, 2001) to classify
the message as spam or not. It is a learning algorithm,
in that we assume the algorithm is trained on a
representative set of previously classified mail with the
corresponding IP addresses selected. The main
intuition behind the algorithm is that mail from the
same or similar IP addresses is likely to share the same
classification. Experimental evidence suggests that this
intuition is true.

This algorithm is very precise at recognizing some
spam and non-spam sources, but it cannot accurately
label sites for which it has little data. For the rest, a
classifier using another technology such as naïve Bayes
or Chung-Kwei (Rigoutsos and Huynh, 2004) can
distinguish more accurately. For instance, while SMTP
Path Analysis is not as accurate as the commonly
employed Bayesian spam classifiers, it recognizes
information that Bayesian classifiers handle at best
generically, and on those parts of that space it does
better. Its results can be used to correct erroneous
evaluations from a Bayesian classifier, while the
Bayesian classifier can classify examples for which

there is insufficient data for effective path analysis. An
aggregate classifier using both results can be better than
either.

It is interesting to compare this approach to domain
validation schemes such as SPF. SPF lets a domain
declare its outgoing e-mail gateways. All mail from
that domain “should” pass through those gateways, if
the SPF information is correct. If a message passes an
SPF check, and we can assume the domain principally
does not send spam, then it is safe to pass that mail
directly on to a user. But since spammers, too, have
registered domains and published SPF records, we
cannot assume that mail that passes SPF validation
originated from a non-spam domain. There needs to be
some means for determining the reputation of those
domains.

The algorithm described here uses the IP addresses
directly and establishes their reputations, sometimes
based on nearby IP addresses, rather than grouping
them by an external set of declarations and learning the
reputation of the groups. The chief advantages that SPF
has in this regard are:

• SPF can group disparate address ranges into a
single entity, so less information is needed to
create a reputation for that grouping, and

• SPF tells explicitly where the boundaries of the
ranges are.

SPF might claim another advantage, in that it can, if the
purported sending domain publishes SPF records,
distinguish mail that goes through legitimate gateways
from mail sent directly from a zombie to the Internet.
However, our algorithm is actually good at recognizing
legitimate gateways and sorting out mail coming
directly from zombie machines (or “botnets”; see
Honeynet, 2005), so this advantage is less than it might
appear to be. The SPF information could clearly be
used in conjunction with our algorithm when available,
and when not, the algorithm stands on its own. Note
also that, while SPF can’t tell anything if the purported
sending domain does not publish SPF records, our
algorithm can learn from a delivery path regardless of
what domain is claimed as the source of the message.

The rest of this paper contains a more complete
description of the algorithm, an explanation of the
experiments we performed, discussion about those
experiments, and our conclusions.

2 Received Line Headers

The SMTP protocol specifies that each SMTP relay
used to send an email message must add at the
beginning of the message’s header list a “received” line
that contains (at least) information about the SMTP
server receiving the message, from where the server
received the message, and a timestamp stating when the

header was added. These header lines, taken together,
provide a trace of the SMTP path used to deliver a
message.

However, the SMTP path listed in a messages received
header cannot be fully trusted. The message headers
are not signed or authenticated in any way and therefore
are easily spoofed. Any SMTP server along the path
can insert fake headers that make the message appear to
come from any path the sender chooses.

Still, some received line headers are reliable. For
instance, all headers that were added by your own
domain’s inbound SMTP servers can be trusted. A site
may also trust the received lines produced by
organizations they regularly do business with, assuming
they can identify the outbound servers of those
organizations. But once the SMTP path implicit in the
received lines reaches an unknown or untrustworthy
server, the remainder of the purported SMTP path
cannot be trusted.

As discussed below, one of the key challenges in
developing an effective spam filter based on received-
line analysis is determining what portions of the SMTP
path recorded in the received lines can be trusted.

3 The Algorithm

SMTP Path Analysis works by learning about the
spamminess or goodness of IP addresses by analyzing
the past history of e-mail sent using that IP address.
The algorithm’s learning phase takes as input a set of
pre-classified messages that are labeled as spam or non-
spam. The learning algorithm extracts from each
message the sequence of IP addresses that mail
supposedly took to get to the recipient and collects
statistics about each IP address. During its
classification phase, the algorithm extracts the IP
address sequence from the target message and yields a
score for that message based on the IP addresses of the
gateways supposedly used to deliver the message. The
score can be subjected to a threshold to yield a
classification of spam or not, or can be used as input to
an aggregate classifier. The algorithm looks at no other
information; in particular, it does not otherwise analyze
the content of the message or consider any domain
information.

In the most basic form of our algorithm, the statistics
collected for each IP address is simply the number of
spam and non-spam e-mails for which it appears.
These counts are then used to estimate the probability
that mail passing through any previously-seen IP
address is spam. The probability estimates are
smoothed as necessary to correct for small sample
sizes. During classification, we look at the sequence of
IP addresses used to deliver the message and assign the
message a spamminess score based on the last IP
address in the chain for which we have sufficient data.

There are two problems that must be fixed before the
above outline of an algorithm is even plausible:

1. Many machines (particularly those at the
beginning of the chain, which may be zombies
or spammers connecting to their service
providers) do not have fixed IP addresses, so
the odds of seeing the same IP address in the
training set as the one in the message we are
trying to classify is lower than we'd like.

2. The above technique is susceptible to
spoofing. That is, the message may be coming
from a spammy IP address and the machine
there may claim that it is passing on a message
from a legitimate sender.

We address the dynamic IP issue by combining
statistics of the current IP address with those of
“nearby” IP addresses whenever there is not sufficient
data for the current IP address to make a reliable
decision. There are many possible definitions of
“nearby” that can be used for this purpose. Our
solution is to build a tree of IP addresses that we've
seen so far. The root of the tree has up to 256 sub trees,
each corresponding to the various possible first bytes of
an IP address.

2
 Each of those sub trees in turn has up to

256 sub trees itself, each corresponding to the second
byte. The same is done for the third and fourth bytes,
though, of course, as we go down the tree the branching
becomes sparser, yielding a tree with many fewer than
2

32
 nodes.

At each node n we store the number of spam messages,
Sn and the number of non-spam messages NSn in which
that IP address or range the node represents has
appeared. A ratio is computed that is a measure of how
spammy the node is, which is Sn/(Sn+NSn): the number
of spam messages divided by the total number of
messages that have come through this address or range.

We cannot just use that ratio as it is. Again, there are
two issues:

1. What we are trying to record at an interior
node is information that will be helpful if we
get an IP address with no exact match below
that node. That value should be influenced by
what happens at the average IP sub range, not
what might happen at a few specific IP
addresses in those ranges. This may be
particularly important in cases where certain
addresses are used by spammers but the range
as a whole is not, and so we average the
activity of the child nodes, not weighted by the
quantity of mail that passes through them.

2 For efficiency, we make the tree sparse, so first-bytes that we have

not yet encountered do not appear in the tree. This sparseness

continues in all branches of the tree.

2. If a node has seen only one piece of spam and
no non-spam, the odds of the next piece of
mail being spam are not 100%.

We solve both problems by the way we actually
calculate the score for that IP address. We add an
artificial new root with a score of 0.5. We repeatedly
go to the subtree that contains the actual IP address if
one is available. At that subtree we compute an
average of the children of that subtree and the parent.
That is, if there are 9 children we take the average of 10
nodes: the parent and the 9 children. For the leaf nodes
we take the average of the parent and ratio for the leaf
node weighted by the number of messages containing
the leaf. Of course, sometimes we don’t reach a leaf
node if we’ve never seen this exact IP address in our
training set. When we get a new message, we look at
each IP address, starting with the last one – the one
closest to our receiving machine. We compute its
score, a number between 0 and 1, and then combine that
with the score for the next IP address. We take a
weighted average of the spamminess of the two IP
addresses, with weight equal to 1/(s*(1-s)) where s is
the spamminess described above. The rationale is that
an IP address that is strongly spammy or strongly non-
spammy in the sequence is a better indicator of the
nature of the message mail – that the addresses with the
most extreme scores are the ones that are most
significant to the computation. We continue this
process of combining the present average to the
spamminess of the next IP address until we reach the
end of the list.

As noted above, the above technique is susceptible to
spoofing. If a spammer spoofs to foil our algorithm, the
mail will appear to come from a legitimate source
through a spammy address. To address this problem,
we establish a credibility value for each intermediate
address, and if an address is not credible we can at least
partially ignore the remaining addresses.

After experimenting with the algorithm we found two
useful improvements.

We have found that, in practice, if there is any IP
address in the sequence that matches exactly an IP
address in our training set, it is a better indicator than
the score given above when we only find an interior
node. So we give more weight to the exact matches.

We have found that there is a distinction between an
address that originated messages and one that was a
gateway, and we keep separate statistics for originating
addresses and intermediate addresses. In particular in
our context, when IBM developed its corporate Internet
presence, most users in Research Division, who had had
Internet email addresses for some time before, moved
slowly from gateways inside Research Division to
corporate-wide gateways. As spam has increased, the
Research gateways now seem to rarely be used for
legitimate mail – 98% of what moves through one of

those gateways is spam, but some researchers still
continue to use it. Hence, mail that goes from there to
other parts of IBM would be labeled as probable spam,
based on the analysis of the received lines. We fixed
this by keeping statistics for the last IP address (the
supposedly originating site) separate from all others.
So, if an address range receives a lot of spam, but all
mail originating near it is good, then we give it a good
score.

4 Experimental Methodology

Our experiments are run against a database that has
been collected from an international group of
approximately 200 users over many months and
contains roughly 170,000 pieces of email. The data
was initially labeled by asking the users to vote on all
spam and any good mail that made it into their junk
mail folder. All 200 users are IBM employees and
know that the information will be used for research
purposes.

Our data base has been further “cleaned” using a
variety of techniques that include clustering of similar
messages and hand analysis of outliers. We have been
careful to not use the algorithms we are developing or
similar techniques in the process of cleaning our
database. However, a small number of obviously miss-
classified notes arose during our evaluation and have
been corrected. The number of such notes is small and
does not substantially impact the overall results.

5 Experimental Results

Figure 1 compares the performance of SMTP path
analysis to a traditional naïve Bayesian classifier using
a standard ROC curve. Each of the algorithms shown
in the figure produces a score rather than a black or
white decision. The ROC curve shows the different
combinations of spam catch rate and false positive rate
that can be achieved by selecting different score
thresholds for blocking spam.

The SMTP path analysis classifier performs
respectably, catching about 70% of all spam with a
false positive rate less than one in a thousand. This
compares quite favorably to what can be done today
with SPF and DNSRBL blacklists. However, its
performance falls substantially behind what can be
achieved today with naïve-Bayes based anti-spam
filters.

What is interesting about SMTP path analysis is that its
method of detecting spam is orthogonal to how
Bayesian-style text classification works. SMTP path
analysis bases its decisions only on how a message is
routed, and completely ignores message content.
Similarly, the typical naïve-Bayesian classifier cannot
make effective use of received lines headers because it
knows nothing about how email messages are routed.

The result is that combining the two algorithm using
classification aggregation techniques can be quite
successful.

Figure 1: SMTP Path Analysis ROC Curve

Figure 1 also shows the performance of combining
naïve-Bayes and SMTP path analysis using a linear
regression aggregator (Segal, 2005). The results show
that SMTP path analysis can cut the number of missed
spam messages in half for any given false positive rate.

Figure 2, on the next page, shows four lines. The red
line is for 5,000 trained and 5,000 tested; the dashed
blue shows 10,000 each; the green shows 40,000 each;
the yellow is for the full DB of 85,000 messages in the
test bucket and 85,000 in the training bucket. As can be
seen from the graph, the algorithm scales very well.
The results suggest approximately a doubling of
accuracy of the algorithm with each doubling of the
data. The algorithm is also very efficient, since it looks
only at a small part of the message. Hence it can be a
very useful pre-filter to a more complex algorithm.

6 Discussion and Comparisons

There has been no shortage of standards activities
attempting to get a better handle on who has sent email.
The most relevant activities are in the domain
authentication area, and in improvements to the
standards for message-tracking headers. Many of these
activities can, once implemented and widely deployed,
be combined synergistically with the ideas above.

In our parsing of the received lines we often found
missing IP addresses. The current standards

incorporate IP addresses as optional elements in the
received line header. If a gateway does not include an
IP address we just ignore it and cannot get information
for that hop. It might seem, then, that a spammer could
just set up a gateway with an implementation that omits
the IP address, and the spammer would get away with
something. What stops this is the reality that the
receiving gateway will put that gateway’s address in its
received line, and it will be picked up there – and we’ll
learn that it is spammy. Nevertheless, standards that
include the IP addresses in a simple-to-parse manner
would make our job that much easier.

Figure 2: Scaling of SMTP Analysis

Our experimental use of IP address ranges, divided on
byte boundaries, has produced very useful results. It is
clear, though, that this is not always the right way to
determine IP-address relationships. We plan further
experimentation with the tree structure, allowing
division within bytes of the IP address (to handle a
netmask of 255.255.192.0, for example). Cached
queries of “whois” databases can also help relate IP
addresses that can not be grouped under one netmask.
Hosted domains may still be an issue, where two
unrelated domains have “nearby” IP addresses by virtue
of using the same hosting service. In these cases,
though, the hosting service will be the ultimate owner
of the address ranges, and must accept some
responsibility for the behavior of its customers. We
believe that enforcement of terms of service will
mitigate this problem; still, more experimentation is
needed in this area.

We are looking forward to using the information
available from SPF to a greater extent – we have so far
done only limited comparisons of our algorithm with
SPF, and found ways in which they can complement
each other. SPF is becoming widely deployed and we
mean to combine it with the above algorithm. Our
latest sample of 135k messages, of which about 23k are
not spam, shows 15.7k passing SPF tests, with 3k “soft
failures” and 2k “hard failures”. But spammers have
also been registering domains and publishing SPF
records, and our Bayesian algorithms find that of the
15.7k passing the SPF tests, 3,584 are spam. We
expect, from the known performance of our Bayesian
classifier, that at most 4 of those it identified as spam
might actually be good mail, so we get the not-
surprising result SPF by itself will not block enough
spam.

We also note that the fact that we use IP addresses
directly, without trying to correlate them to domains or
senders (that is, we do not try to validate the sender or
detect spoofing, but instead aim to determine the
spamminess of the delivery path), avoids the difficulty
that SPF has with forwarders and mailing lists. If the
path from aol.com to ieee.org to ibm.com is not
spammy, it will not matter that ieee.org wound up in the
middle of the delivery path. This suggests that our
mechanism might be a good complement to SPF.

There are two techniques we intend to try:

• Map all mail from within an SPF domain to a
single IP address and then apply our algorithm to
the result. We would collapse all addresses within
that domain to one entry.

• Insert a unique ID for each SPF domain when
mail is sent from anywhere in that domain, at the
domain boundary. This would not replace the
existing IP addresses, but would add a domain
identifier to the sequence.

We have shown that benefit can be derived from
examining IP addresses even without using a domain
validation mechanism such as SPF. We next discuss
the value of the combination of our algorithm with SPF.

For a long time there will be domains that do not
deploy SPF, and so the techniques described here can
be especially useful for mail coming from them.
Moreover, the techniques described here establish a
learned reputation system, and may in part be applied to
create a reputation service. Many believe, and our
experiments agree, that a reputation service is necessary
to empower domain validation techniques.

In IBM North America there are about 10 mail
gateways, so that 10 times as much data might need to
be gathered about IBM. If some of the machines in a
domain have become zombies, and the zombies send
through the mail gateway, the mail those zombies send
will pass the SPF tests. In the algorithm we described

with enough data the reputation for those zombies can
be distinguished from that of the rest of the domain,
since the zombies used for spam probably send out a lot
of mail. The latter cannot be done with a pure domain-
based system.

However there are values to a pure domain systems
over a pure IP based system beyond needing less data
for learning, because a pure IP system can be confused
when an organization opens a new gateway in a
different part of the IP range from their old gateways.
While the organization can make sure the SPF records
include the new gateway before it is deployed, it will
take some time for our algorithm to learn about it.

Goodman describes mechanisms for and problems with
using received lines, since they can’t be trusted and can
not always be parsed reliably (Goodman, 2004). He
specifically develops techniques for determining the
boundary between internal SMTP servers which can be
trusted and external SMTP servers which may be
unreliable. The method presented here nicely sidesteps
this issue by learning what IP addresses can be trusted
based on past history; thereby, implicitly identifying
both internal and external that can be trusted to provide
reliable received headers.

7 Conclusions

We have established that examining IP addresses is a
valuable addition to the arsenal of tools that the anti-
spam community can use. When used in combination
with a Bayesian filter it approximately doubles the
accuracy that Bayesian filter. Understanding how it
works in combination with domain authentication is an
important next step both in refining the algorithm and
in understanding the value of domain authentication
techniques themselves.

Acknowledgements

The authors want to thank the other members of the
IBM antispam research team, who have participated in
discussions and technical work that have contributed to
this paper. Those involved include Nathaniel
Borenstein, Jason Crawford, Schlomo Hershkop, and
Jeffrey Kephart.

References

Lentczner, M. and Wong, M. “Sender Policy

Framework: Authorizing Use of Domains in MAIL

FROM”, Internet Draft,

http://www.ietf.org/internet-drafts/draft-lentczner-

spf-00.txt, October, 2004.

Wong, M. and Schlitt, W. “Sender Policy Framework:

Authorizing Use of Domains in E-MAIL”, Internet

Draft, http://www.ietf.org/internet-drafts/draft-

schlitt-spf-classic-00.txt, December, 2004.

Lyon, J. and Wong, M. “Sender ID: Authenticating E-

Mail”, Internet Draft, http://www.ietf.org/internet-

drafts/ draft-lyon-senderid-core-00.txt, October,

2004.

Lyon, J. “Purported Responsible Address in E-Mail

Messages”, Internet Draft,

http://www.ietf.org/internet-drafts/ draft-lyon-

senderid-pra-00.txt, October, 2004.

Klensin, J. “Simple Mail Transfer Protocol”, Internet

Engineering Task Force, RFC 2821, April, 2001.

Rigoutsos, I. and Huynh, T. “Chung-Kwei: a Pattern-

discovery-based System for the Automatic

Identification of Unsolicited E-mail Messages

(SPAM)”, Conference on Email and Anti-Spam

2004, July, 2004.

Segal, R. “Combining Multiple Classifiers”, Virus

Bulletin, February 2005.

The Honeynet Project & Research Alliance. “Know

Your Enemy: Tracking Botnets”,

http://honeynet.org/papers/bots/, March, 2005.

Goodman, J. “IP Addresses in Email Clients”,

Conference on Email and Anti-Spam 2004, July

2004.

