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Abstract 

 

Most proponents of domain authentication 
suggest combining domain authentication with 
reputation services.  This paper presents a new 
learning algorithm for learning the reputation 
of email domains and  IP addresses based on 
analyzing the paths used to transmit known 
spam and known good mail.  The result is an 
effective algorithm providing the reputation 
information needed to combine with domain 
authentication to make filtering decisions.  
This algorithm achieves many of the benefits 
offered by domain-authentication systems, 
black-list services, and white-list services 
provide without any infrastructure costs or 
rollout requirements. 
 

1 Introduction 

Mechanisms to validate the sending domain of an email 
message are becoming popular, standardized, and hotly 
debated.  The goals of SPF (Lentczner and Wong, 
2004; Wong and Schlitt, 2004), Caller-ID (expired 
proposal), and Sender-ID (Lyon and Wong, 2004; 
Lyon, 2004) are basically the same: they are each 
designed to prevent “spoofing” by making it possible 
for domain owners to publish a list of valid outgoing 
email servers.  Messages that pass one of these tests can 
be reliably associated with a domain that participated in 
the delivery of the message

1
.  However, this 

information is not sufficient to filter spam.  In addition 
to knowing a responsible domain, spam filtering 
requires information about what domains send spam.  
Most proponents of domain authentication therefore 
suggest combining domain authentication with 
reputation services. 

                                                           
1 …for some value of “reliably” that is the subject of much debate and 

controversy.  “Plausibly” might be a better characterization, as these 

techniques are meant to be “best effort” validations. 

This paper presents a new learning algorithm for 
learning the reputation of email domains and  IP 
addresses based on analyzing the paths used to transmit 
known spam and known good mail.  This information is 
combined with a novel algorithm for filtering spoofed 
mail headers to ensure that spammers cannot 
circumvent the analysis.  The result is an effective 
algorithm providing the reputation information needed 
to combine with domain authentication to make 
filtering decisions. 

Interestingly, analysis of this algorithm suggests that 
some or most of the benefits that domain-authentication 
systems, black-list services, and white-list services 
provide can be achieved using local learning without 
the need for extensive adoption of domain-
authentications or the costs of third-party black and 
white list services. 

The algorithm we describe uses only the IP addresses 
mentioned in the standard “received” lines from the 
headers of an email message (Klensin, 2001) to classify 
the message as spam or not.  It is a learning algorithm, 
in that we assume the algorithm is trained on a 
representative set of previously classified mail with the 
corresponding IP addresses selected.  The main 
intuition behind the algorithm is that mail from the 
same or similar IP addresses is likely to share the same 
classification.  Experimental evidence suggests that this 
intuition is true.   

This algorithm is very precise at recognizing some 
spam and non-spam sources, but it cannot accurately 
label sites for which it has little data.   For the rest, a 
classifier using another technology such as naïve Bayes 
or Chung-Kwei (Rigoutsos and Huynh, 2004) can 
distinguish more accurately.  For instance, while SMTP 
Path Analysis is not as accurate as the commonly 
employed Bayesian spam classifiers, it recognizes 
information that Bayesian classifiers handle at best 
generically, and on those parts of that space it does 
better.  Its results can be used to correct erroneous 
evaluations from a Bayesian classifier, while the 
Bayesian classifier can classify examples for which 



there is insufficient data for effective path analysis.  An 
aggregate classifier using both results can be better than 
either. 

It is interesting to compare this approach to domain 
validation schemes such as SPF.  SPF lets a domain 
declare its outgoing e-mail gateways.  All mail from 
that domain “should” pass through those gateways, if 
the SPF information is correct.  If a message passes an 
SPF check, and we can assume the domain principally 
does not send spam, then it is safe to pass that mail 
directly on to a user.  But since spammers, too, have 
registered domains and published SPF records, we 
cannot assume that mail that passes SPF validation 
originated from a non-spam domain.   There needs to be 
some means for determining the reputation of those 
domains. 

The algorithm described here uses the IP addresses 
directly and establishes their reputations, sometimes 
based on nearby IP addresses, rather than grouping 
them by an external set of declarations and learning the 
reputation of the groups.  The chief advantages that SPF 
has in this regard are: 

• SPF can group disparate address ranges into a 
single entity, so less information is needed to 
create a reputation for that grouping, and 

• SPF tells explicitly where the boundaries of the 
ranges are. 

SPF might claim another advantage, in that it can, if the 
purported sending domain publishes SPF records, 
distinguish mail that goes through legitimate gateways 
from mail sent directly from a zombie to the Internet.  
However, our algorithm is actually good at recognizing 
legitimate gateways and sorting out mail coming 
directly from zombie machines (or “botnets”; see 
Honeynet, 2005), so this advantage is less than it might 
appear to be.  The SPF information could clearly be 
used in conjunction with our algorithm when available, 
and when not, the algorithm stands on its own.  Note 
also that, while SPF can’t tell anything if the purported 
sending domain does not publish SPF records, our 
algorithm can learn from a delivery path regardless of 
what domain is claimed as the source of the message. 

The rest of this paper contains a more complete 
description of the algorithm, an explanation of the 
experiments we performed, discussion about those 
experiments, and our conclusions. 

2 Received Line Headers 

The SMTP protocol specifies that each SMTP relay 
used to send an email message must add at the 
beginning of the message’s header list a “received” line 
that contains (at least) information about the SMTP 
server receiving the message, from where the server 
received the message, and a timestamp stating when the 

header was added.  These header lines, taken together, 
provide a trace of the SMTP path used to deliver a 
message. 

However, the SMTP path listed in a messages received 
header cannot be fully trusted.   The message headers 
are not signed or authenticated in any way and therefore 
are easily spoofed.   Any SMTP server along the path 
can insert fake headers that make the message appear to 
come from any path the sender chooses.    

Still, some received line headers are reliable.  For 
instance, all headers that were added by your own 
domain’s inbound SMTP servers can be trusted.   A site 
may also trust the received lines produced by 
organizations they regularly do business with, assuming 
they can identify the outbound servers of those 
organizations.   But once the SMTP path implicit in the 
received lines reaches an unknown or untrustworthy 
server, the remainder of the purported SMTP path 
cannot be trusted. 

As discussed below, one of the key challenges in 
developing an effective spam filter based on received-
line analysis is determining what portions of the SMTP 
path recorded in the received lines can be trusted. 

3 The Algorithm  

SMTP Path Analysis works by learning about the 
spamminess or goodness of IP addresses by analyzing 
the past history of e-mail sent using that IP address.  
The algorithm’s learning phase takes as input a set of 
pre-classified messages that are labeled as spam or non-
spam.   The learning algorithm extracts from each 
message the sequence of IP addresses that mail 
supposedly took to get to the recipient and collects 
statistics about each IP address.  During its 
classification phase, the algorithm extracts the IP 
address sequence from the target message and yields a 
score for that message based on the IP addresses of the 
gateways supposedly used to deliver the message. The 
score can be subjected to a threshold to yield a 
classification of spam or not, or can be used as input to 
an aggregate classifier.  The algorithm looks at no other 
information; in particular, it does not otherwise analyze 
the content of the message or consider any domain 
information. 

In the most basic form of our algorithm, the statistics 
collected for each IP address is simply the number of 
spam and non-spam e-mails for which it appears.   
These counts are then used to estimate the probability 
that mail passing through any previously-seen IP 
address is spam.   The probability estimates are 
smoothed as necessary to correct for small sample 
sizes.  During classification, we look at the sequence of 
IP addresses used to deliver the message and assign the 
message a spamminess score based on the last IP 
address in the chain for which we have sufficient data.   



There are two problems that must be fixed before the 
above outline of an algorithm is even plausible: 

1. Many machines (particularly those at the 
beginning of the chain, which may be zombies 
or spammers connecting to their service 
providers) do not have fixed IP addresses, so 
the odds of seeing the same IP address in the 
training set as the one in the message we are 
trying to classify is lower than we'd like.   

2. The above technique is susceptible to 
spoofing.  That is, the message may be coming 
from a spammy IP address and the machine 
there may claim that it is passing on a message 
from a legitimate sender.   

We address the dynamic IP issue by combining 
statistics of the current IP address with those of 
“nearby” IP addresses whenever there is not sufficient 
data for the current IP address to make a reliable 
decision.  There are many possible definitions of 
“nearby” that can be used for this purpose.  Our 
solution is to build a tree of IP addresses that we've 
seen so far.  The root of the tree has up to 256 sub trees, 
each corresponding to the various possible first bytes of 
an IP address.

2
  Each of those sub trees in turn has up to 

256 sub trees itself, each corresponding to the second 
byte.  The same is done for the third and fourth bytes, 
though, of course, as we go down the tree the branching 
becomes sparser, yielding a tree with many fewer than 
2

32
 nodes. 

At each node n we store the number of spam messages, 
Sn and the number of non-spam messages NSn in which 
that IP address or range the node represents has 
appeared.  A ratio is computed that is a measure of how 
spammy the node is, which is Sn/(Sn+NSn): the number 
of spam messages divided by the total number of 
messages that have come through this address or range. 

We cannot just use that ratio as it is.  Again, there are 
two issues: 

1. What we are trying to record at an interior 
node is information that will be helpful if we 
get an IP address with no exact match below 
that node.  That value should be influenced by 
what happens at the average IP sub range, not 
what might happen at a few specific IP 
addresses in those ranges.  This may be 
particularly important in cases where certain 
addresses are used by spammers but the range 
as a whole is not, and so we average the 
activity of the child nodes, not weighted by the 
quantity of mail that passes through them. 

                                                           
2 For efficiency, we make the tree sparse, so first-bytes that we have 

not yet encountered do not appear in the tree.  This sparseness 

continues in all branches of the tree. 

2. If a node has seen only one piece of spam and 
no non-spam, the odds of the next piece of 
mail being spam are not 100%. 

We solve both problems by the way we actually 
calculate the score for that IP address.  We add an 
artificial new root with a score of 0.5.  We repeatedly 
go to the subtree that contains the actual IP address if 
one is available.  At that subtree we compute an 
average of the children of that subtree and the parent.  
That is, if there are 9 children we take the average of 10 
nodes: the parent and the 9 children.  For the leaf nodes 
we take the average of the parent and ratio for the leaf 
node weighted by the number of messages containing 
the leaf.  Of course, sometimes we don’t reach a leaf 
node if we’ve never seen this exact IP address in our 
training set. When we get a new message, we look at 
each IP address, starting with the last one – the one 
closest to our receiving machine.  We compute its 
score, a number between 0 and 1, and then combine that 
with the score for the next IP address.  We take a 
weighted average of the spamminess of the two IP 
addresses, with weight equal to 1/(s*(1-s)) where s is 
the spamminess described above.  The rationale is that 
an IP address that is strongly spammy or strongly non-
spammy in the sequence is a better indicator of the 
nature of the message mail – that the addresses with the 
most extreme scores are the ones that are most 
significant to the computation.  We continue this 
process of combining the present average to the 
spamminess of the next IP address until we reach the 
end of the list. 

As noted above, the above technique is susceptible to 
spoofing.  If a spammer spoofs to foil our algorithm, the 
mail will appear to come from a legitimate source 
through a spammy address.  To address this problem, 
we establish a credibility value for each intermediate 
address, and if an address is not credible we can at least 
partially ignore the remaining addresses. 

After experimenting with the algorithm we found two 
useful improvements.   

We have found that, in practice, if there is any IP 
address in the sequence that matches exactly an IP 
address in our training set, it is a better indicator than 
the score given above when we only find an interior 
node.  So we give more weight to the exact matches. 

We have found that there is a distinction between an 
address that originated messages and one that was a 
gateway, and we keep separate statistics for originating 
addresses and intermediate addresses. In particular in 
our context, when IBM developed its corporate Internet 
presence, most users in Research Division, who had had 
Internet email addresses for some time before, moved 
slowly from gateways inside Research Division to 
corporate-wide gateways.  As spam has increased, the 
Research gateways now seem to rarely be used for 
legitimate mail – 98% of what moves through one of 



those gateways is spam, but some researchers still 
continue to use it.  Hence, mail that goes from there to 
other parts of IBM would be labeled as probable spam, 
based on the analysis of the received lines.  We fixed 
this by keeping statistics for the last IP address (the 
supposedly originating site) separate from all others.  
So, if an address range receives a lot of spam, but all 
mail originating near it is good, then we give it a good 
score. 

4 Experimental Methodology 

Our experiments are run against a database that has 
been collected from an international group of 
approximately 200 users over many months and 
contains roughly 170,000 pieces of email.  The data 
was initially labeled by asking the users to vote on all 
spam and any good mail that made it into their junk 
mail folder.   All 200 users are IBM employees and 
know that the information will be used for research 
purposes.   

Our data base has been further “cleaned” using a 
variety of techniques that include clustering of similar 
messages and hand analysis of outliers.  We have been 
careful to not use the algorithms we are developing or 
similar techniques in the process of cleaning our 
database.  However, a small number of obviously miss-
classified notes arose during our evaluation and have 
been corrected.   The number of such notes is small and 
does not substantially impact the overall results. 

5 Experimental Results 

Figure 1 compares the performance of SMTP path 
analysis to a traditional naïve Bayesian classifier using 
a standard ROC curve.  Each of the algorithms shown 
in the figure produces a score rather than a black or 
white decision.  The ROC curve shows the different 
combinations of spam catch rate and false positive rate 
that can be achieved by selecting different score 
thresholds for blocking spam.   

The SMTP path analysis classifier performs 
respectably, catching about 70% of all spam with a 
false positive rate less than one in a thousand.  This 
compares quite favorably to what can be done today 
with SPF and DNSRBL blacklists.  However, its 
performance falls substantially behind what can be 
achieved today with naïve-Bayes based anti-spam 
filters.    

What is interesting about SMTP path analysis is that its 
method of detecting spam is orthogonal to how 
Bayesian-style text classification works.   SMTP path 
analysis bases its decisions only on how a message is 
routed, and completely ignores message content.   
Similarly, the typical naïve-Bayesian classifier cannot 
make effective use of received lines headers because it 
knows nothing about how email messages are routed.  

The result is that combining the two algorithm using 
classification aggregation techniques can be quite 
successful. 

 

 

Figure 1: SMTP Path Analysis ROC Curve 

 
Figure 1 also shows the performance of combining 
naïve-Bayes and SMTP path analysis using a linear 
regression aggregator (Segal, 2005).  The results show 
that SMTP path analysis can cut the number of missed 
spam messages in half for any given false positive rate.    

Figure 2, on the next page, shows four lines.  The red 
line is for 5,000 trained and 5,000 tested; the dashed 
blue shows 10,000 each; the green shows 40,000 each; 
the yellow is for the full DB of 85,000 messages in the 
test bucket and 85,000 in the training bucket. As can be 
seen from the graph, the algorithm scales very well.  
The results suggest approximately a doubling of 
accuracy of the algorithm with each doubling of the 
data.  The algorithm is also very efficient, since it looks 
only at a small part of the message.  Hence it can be a 
very useful pre-filter to a more complex algorithm. 

6 Discussion and Comparisons 

 
There has been no shortage of standards activities 
attempting to get a better handle on who has sent email. 
The most relevant activities are in the domain 
authentication area, and in improvements to the 
standards for message-tracking headers.  Many of these 
activities can, once implemented and widely deployed, 
be combined synergistically with the ideas above. 

In our parsing of the received lines we often found 
missing IP addresses.  The current standards 



incorporate IP addresses as optional elements in the 
received line header.  If a gateway does not include an 
IP address we just ignore it and cannot get information 
for that hop.  It might seem, then, that a spammer could 
just set up a gateway with an implementation that omits 
the IP address, and the spammer would get away with 
something.  What stops this is the reality that the 
receiving gateway will put that gateway’s address in its 
received line, and it will be picked up there – and we’ll 
learn that it is spammy.  Nevertheless, standards that 
include the IP addresses in a simple-to-parse manner 
would make our job that much easier. 

Figure 2: Scaling of SMTP Analysis 

 

Our experimental use of IP address ranges, divided on 
byte boundaries, has produced very useful results.  It is 
clear, though, that this is not always the right way to 
determine IP-address relationships.  We plan further 
experimentation with the tree structure, allowing 
division within bytes of the IP address (to handle a 
netmask of 255.255.192.0, for example).  Cached 
queries of “whois” databases can also help relate IP 
addresses that can not be grouped under one netmask.  
Hosted domains may still be an issue, where two 
unrelated domains have “nearby” IP addresses by virtue 
of using the same hosting service.  In these cases, 
though, the hosting service will be the ultimate owner 
of the address ranges, and must accept some 
responsibility for the behavior of its customers.  We 
believe that enforcement of terms of service will 
mitigate this problem; still, more experimentation is 
needed in this area. 

We are looking forward to using the information 
available from SPF to a greater extent – we have so far 
done only limited comparisons of our algorithm with 
SPF, and found ways in which they can complement 
each other.  SPF is becoming widely deployed and we 
mean to combine it with the above algorithm.  Our 
latest sample of 135k messages, of which about 23k are 
not spam, shows 15.7k passing SPF tests, with 3k “soft 
failures” and 2k “hard failures”.  But spammers have 
also been registering domains and publishing SPF 
records, and our Bayesian algorithms find that of the 
15.7k passing the SPF tests, 3,584 are spam.  We 
expect, from the known performance of our Bayesian 
classifier, that at most 4 of those it identified as spam 
might actually be good mail, so we get the not-
surprising result SPF by itself will not block enough 
spam. 

We also note that the fact that we use IP addresses 
directly, without trying to correlate them to domains or 
senders (that is, we do not try to validate the sender or 
detect spoofing, but instead aim to determine the 
spamminess of the delivery path), avoids the difficulty 
that SPF has with forwarders and mailing lists.  If the 
path from aol.com to ieee.org to ibm.com is not 
spammy, it will not matter that ieee.org wound up in the 
middle of the delivery path.  This suggests that our 
mechanism might be a good complement to SPF. 

There are two techniques we intend to try: 

• Map all mail from within an SPF domain to a 
single IP address and then apply our algorithm to 
the result.  We would collapse all addresses within 
that domain to one entry. 

• Insert a unique ID for each SPF domain when 
mail is sent from anywhere in that domain, at the 
domain boundary.  This would not replace the 
existing IP addresses, but would add a domain 
identifier to the sequence. 

We have shown that benefit can be derived from 
examining IP addresses even without using a domain 
validation mechanism such as SPF.  We next discuss 
the value of the combination of our algorithm with SPF. 

For a long time there will be domains that do not 
deploy SPF, and so the techniques described here can 
be especially useful for mail coming from them.  
Moreover, the techniques described here establish a 
learned reputation system, and may in part be applied to 
create a reputation service.  Many believe, and our 
experiments agree, that a reputation service is necessary 
to empower domain validation techniques. 

In IBM North America there are about 10 mail 
gateways, so that 10 times as much data might need to 
be gathered about IBM.  If some of the machines in a 
domain have become zombies, and the zombies send 
through the mail gateway, the mail those zombies send 
will pass the SPF tests.  In the algorithm we described 



with enough data the reputation for those zombies can 
be distinguished from that of the rest of the domain, 
since the zombies used for spam probably send out a lot 
of mail.  The latter cannot be done with a pure domain-
based system.   

However there are values to a pure domain systems 
over a pure IP based system beyond needing less data 
for learning, because a pure IP system can be confused 
when an organization opens a new gateway in a 
different part of the IP range from their old gateways.  
While the organization can make sure the SPF records 
include the new gateway before it is deployed, it will 
take some time for our algorithm to learn about it. 

Goodman describes mechanisms for and problems with 
using received lines, since they can’t be trusted and can 
not always be parsed reliably (Goodman, 2004).  He 
specifically develops techniques for determining the 
boundary between internal SMTP servers which can be 
trusted and external SMTP servers which may be 
unreliable.   The method presented here nicely sidesteps 
this issue by learning what IP addresses can be trusted 
based on past history; thereby, implicitly identifying 
both internal and external that can be trusted to provide 
reliable received headers. 

7 Conclusions 

We have established that examining IP addresses is a 
valuable addition to the arsenal of tools that the anti-
spam community can use.  When used in combination 
with a Bayesian filter it approximately doubles the 
accuracy that Bayesian filter.  Understanding how it 
works in combination with domain authentication is an 
important next step both in refining the algorithm and 
in understanding the value of domain authentication 
techniques themselves.  
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