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ABSTRACT
In this paper, we propose a new asymmetric boosting method,
Boosting with Different Costs. Traditional boosting meth-
ods assume the same cost for misclassified instances from
different classes, and in this way focus on good performance
with respect to overall accuracy. Our method is more generic,
and is designed to be more suitable for problems where the
major concern is a low false positive (or negative) rate, such
as spam filtering. Experimental results on a large scale email
spam data set demonstrate the superiority of our method
over state-of-the-art techniques.

1. INTRODUCTION
Classification is a very important field in machine learning,
and has been well studied over the past years. Many differ-
ent classification methods have been proposed, such as lo-
gistic regression, decision trees, neural networks, SVMs, etc.
Recent developments in classification methodology combines
individual classifiers into a powerful ensemble classifier, which
predicts the label of a particular instance using a weighted
vote over the ensemble.

Boosting methods are ensemble methods in which one adds
new base classifiers to the ensemble in a sequential way (e.g.,
Freund & Schapire, 1997). The new classifiers are trained
on the basis of reweighed versions of the data, where in-
stances that are not predicted well by the current ensemble
are given a higher weight. This simple strategy of combin-
ing classifiers has shown to improve results dramatically in
many cases, and thus has been the focus of much subse-
quent research. See, e.g., Friedman, Hastie & Tibshirani
(2000), Mason, Baxter, Bartlett & Frean (1999), and Fried-
man (2001) to mention a few.

The loss function is one of the key factors in a standard clas-
sification framework. In boosting, this loss function affects
the reweighing of the data used to train the next classifier in
the ensemble. Most loss functions are symmetric in the sense
that they assume the same cost for misclassified instances
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with different class labels. In many application domains,
however, this assumption is not appropriate. For example,
in an email spam filtering setting it is much more concerning
to lose a piece of good mail (ham) than it is to receive a few
unsoliced mails (spam).

In this paper we focus on email spam filtering. Recently, An-
droutsopoulos, Paliouras & Michelakis (2004) and Carreras
& Marquez (2001) introduced boosting with symmetric cost
functions for building spam filtering classifiers. We propose
a new asymmetric boosting method, Boosting with Differ-
ent Costs (BDC). This method is generally applicable to any
problems, where it is important to achieve good classifica-
tion at low false positive (or low false negative) rates.

Despite the slightly mind-bending connotation, we will fol-
low tradition and denote the mis-classification of good emails
as false positives. For an email spam filter, false positives are
therefore more expensive than false negatives—or in other
words, misclassifying good email as spam is more concerning
than the other way around. To accommodate this asymme-
try, a commonly used method is stratification with more em-
phasis on ham than spam emails during the training of the
classifier. For boosting, this stratification can be achieved
by multiplying the loss associated with a ham email by a
utility value greater than one.

One possible problem with this simple method is that all the
spam emails are de-emphasized in the same way no matter
if they are important for constructing the classifier or not.
If the training data are noisy, either due to mis-labeling or
due to very uncharacteristic spam examples—which is often
the case—we will not be able to differentiate between the
noisy and the characteristic spam examples. In this way,
the performance of the subsequent classifier may be largely
affected by the noise.

The proposed BDC method is designed to solve this prob-
lem. It is based on the MarginBoost framework (Mason,
Baxter, Bartlett & Frean, 1999). In our approach, we de-
sign two different cost functions, one for ham and one for
spam. For ham, the cost gradually increases as an instance
moves away from the decision boundary on the wrong side of
its label; while for spam, the cost remains unchanged after
it reaches a point far enough from the decision boundary.
As will become clear in Section 3, the effect of this differ-
ence in the cost functions is that we are trading off difficult
spam for the ability to better classify all ham and easier,



more characteristic spam. We are in this way skewing the
classifier towards better classification at low false positive
rates.

As straw men for comparisons, we will—with and with-
out stratification—consider symmetric boosting with logis-
tic loss, as well as logistic regression, which is one of the
most popular machine learning algorithms for email spam
filtering. See, e.g., Yih, Goodman, & Hulten (2006). As no-
ticed by Friedman, Hastie & Tibshirani (2000) and Collins,
Schapire & Singer (2000), using logistic loss, boosting and
logistic regression are quite similar. To further bolster this
boosting view on logistic regression and in this way better
understand similarities and differences to our BDC method,
we demonstrate how logistic regression can be considered as
a special implementation of the MarginBoost framework in
Mason et al. (1999).

Our spam filtering application involves a large number of
features, and it turns out that if we use decision stumps as
the base classifiers, boosting is similar to logistic regression
with a smart feature selection method. In addition, boosting
with decision trees of depth two, for example, can be used
to add more complicated co-occurrence features to existing
models, which is not possible for logistic regression without
an explosion in the number of parameters.

To summarize, the possible advantages of BDC include:

1. BDC is tailored for spam filtering by introducing dif-
ferent cost functions for ham and spam.

2. Unlike stratification, spam is de-emphasized only when
hard to classify correctly. If the training data is noisy,
BDC will filter out noisy spam, and focus on all the
other instances (ham and characteristic spam). Thus
it produces a classifier with better performance at low
false positive rate.

3. Like other boosting algorithms, BDC can be used to
select features, which will save space for storing the
model and have faster runtime when deployed; it can
also be used to add more complicated features into
existing models without an explosion in the number of
parameters.

The rest of the paper is organized as follows. In Section 2,
we briefly review the MarginBoost framework (Mason et al.,
1999), and view logistic regression as a special implementa-
tion of this framework. In Section 3, we introduce the cost
functions used in BDC, present the associated boosting al-
gorithm, and discuss its behavior in the low false positive
region. Section 4 studies the parameter setting in BDC. To
prove the effectiveness of BDC in spam filtering, we conduct
experiments on a large scale spam data set, and summarize
the results in Section 5. In Section 6 we discuss related work,
followed by conclusions in Section 7.

2. MARGINBOOST
MarginBoost is a special variation of a more general class
of boosting algorithms based on gradient decent in func-
tion space. A detailed derivation of this general class of

boosting algorithms can be found in Mason et al. (1999)
and Friedman (2001). In this Section, we will first review
the MarginBoost algorithm, as described in Mason et al.
(1999), who also coined this name. Then, we will consider
particular specializations of MarginBoost and demonstrate
their relations to logistic regression.

2.1 The Framework
In a binary classification problem, given a training set D =
{(x1, y1), . . . , (xm, ym)} of m labeled data points generated
according to some unknown distribution, where xi ∈ Rd

and yi ∈ {±1}, we wish to construct a voted combination of
classifiers, or strong classifier:

F (x) =

T∑
t=1

wtft(x) (1)

where ft(x) : Rd → {±1} are base classifiers, and wt ∈ R
are the weights for each base classifier in the combination. A
data point (x, y) is classified according to the sign of F (x),
and its margin is defined by yF (x). A positive value for the
margin therefore corresponds to a correct classification and
a negative value corresponds to a misclassification.

To obtain the classifier, MarginBoost minimizes the sample
average of some suitable cost function of the margin C :
R → R. That is, we find a classifier F that minimizes the
loss functional

S(F ) =
1

m

m∑
i=1

C (yiF (xi)) (2)

We emphasize here that MarginBoost does not perform tra-
ditional parameter optimization. As formulated in Friedman
(2001), we instead consider F evaluated at each point x to
be a “parameter”, and seek to minimize (2) directly with
respect to F evaluated at each x.

Taking a numerical approach, the minimization of (2) can
be achieved by gradient descent in function space. In other
words, given the current classifier Ft, at iteration t of the
algorithm, we are looking for a new direction ft+1 such that
S(Ft+εft+1) decreases most rapidly, for small values of ε. In
function space, the desired direction is simply the negative
functional derivative of S at Ft, −∇S(Ft)(x), defined by

∇S(Ft)(x) =
∂S(Ft + ε1x)

∂ε

∣∣∣∣
ε=0

=
1

m

m∑
i=1

δ(x = xi)yiC
′ (yiFt(xi)) (3)

where 1x is the indicator function at x , δ(x = xi) = 1 iff
x = xi, and C′(z) is the derivative of the cost function with
respect to the margin z.

This derivative is defined only at the data points and do
not generalize to other values. We achieve generalization
(or smoothing) by restricting the direction of ft+1 to a base
classifier in some fixed parameterized class F . In general it
will therefore not be possible to choose ft+1 = −∇S(Ft)(x),
so instead we find the base classifier that has the greatest
inner product with −∇S(Ft)(x). Letting a dot denote inner



product, and inserting the expression for ∇S(Ft) from (3),
the new direction ft+1 should in this case maximize

−〈∇S(Ft), ft+1〉=− 1

m

m∑
i=1

∇S(Ft)(xi) · ft+1(xi)

=− 1

m2

m∑
i=1

yift+1(xi)C
′(yiFt(xi)) (4)

For later discussions, it is important to notice from (4) that
the new base classifier ft+1 is found by considering this clas-
sifier’s weighted margins for all the data points, yift+1(xi),
where the weights are in proportion to minus the deriva-
tive of the cost function evaluated at the current margins,
Dt(i) ∝ −C′(yiFt(xi)).

Given the new base classifier ft+1, we can now use a line
search to find the best coefficient wt+1 for ft+1. The itera-
tive process of adding wt+1ft+1 to the strong classifier in (1)
can be terminated when the dot product between the nega-
tive functional derivative of S at Ft and any base classifier is
less than or equal to zero. Another stopping criterion com-
monly used in practice is to set a fixed maximum number of
iterations.

2.2 MarginBoost Specializations
As has been noted in the literature (e.g., Mason et al.,
1999 and Friedman, 2001), many important boosting algo-
rithms can be reformulated in the MarginBoost framework.
For example, if we use the exponential loss C (yF (x)) =
exp(−yF (x)), and wt+1 is obtained by a line search, we will
get AdaBoost (Freund & Schapire, 1997); if we use the lo-
gistic loss C (yF (x)) = ln (1 + exp(−yF (x))), and wt+1 is
chosen by a single Newton-Raphson step, we get LogitBoost
(Friedman et al., 2000). In general, the MarginBoost frame-
work will work for any differentiable cost function, and in
most situations, a monotonically decreasing cost function of
the margin is a sensible choice.

In order to demonstrate that linear logistic regression can
also be viewed as a special implementation of MarginBoost,
we will concentrate on the logistic loss function. Let us first
consider the class of linear base classifiers of the form

F = {f(x) = a>x + b, a ∈ Rd, b ∈ R, ‖ a ‖2 +b2 = 1},
where a is the coefficient vector, b is the intercept, and >
denotes transpose. The new direction ft+1 is obtained by
choosing a base classifier in F that maximizes (4) with a
logistic loss for C

−〈∇S(Ft), ft+1〉 ∝
m∑

i=1

yi(a
>
t+1xi + bt+1)

exp(−yiFt(xi))

1 + exp(−yiFt(xi))

This constrained optimization yields a classifier in F with
coefficients and intercept

at+1 ∝
m∑

i=1

yixi exp(−yiFt(xi))

1 + exp(−yiFt(xi))
(5)

bt+1 ∝
m∑

i=1

yi exp(−yiFt(xi))

1 + exp(−yiFt(xi))
(6)

Iteration t+1 therefore updates the strong classifier as

Ft+1(x) = Ft(x) + wt+1(a
>
t+1x + bt+1),

where at+1 and bt+1 are determined as in (5) and (6), and
wt+1 is a small positive parameter, which is chosen by line
search or based on simple heuristics.

It is an interesting observation that for a logistic regression
model, P (y|x) = 1/

(
1 + exp(−y(a>x + b))

)
with parame-

ters a and b, the gradient of the log-likelihood equals exactly
the same expressions as on the right-hand sides of (5) and
(6). Hence, the particular boosting algorithm, described
above, is equivalent to logistic regression with a gradient
ascent parameter optimization method. 1

Another interesting observation will follow from choosing de-
cision stumps as the class of base classifiers. For the spam
data set that we will consider later in this paper, all features
are binary, i.e., x ∈ {0, 1}d. In this case, the learned decision
stump at iteration t can be defined as ft(x) = cxt−d, where
xt is the most discriminating feature at that iteration, and
c, d ∈ R. The voted combination F (x) will therefore also re-
sult in a linear classifier of the form F (x) = a>x + b, where
a ∈ Rd and b ∈ R. Since F (x) and logistic regression are
minimizing the same concave cost function, upon conver-
gence, the two classifiers would therefore again be the same,
although they are achieved in two different ways. It is also
noteworthy that by making use of a rougher stopping cri-
terion, MarginBoost may end up with a sparse coefficient
vector a. In this case, MarginBoost implicitly performs fea-
ture selection, which will reduce both the storage space and
the response time for the deployed classifier.

3. BOOSTING WITH DIFFERENT COSTS
Existing cost functions used in the MarginBoost framework
(including the one used in logistic regression) are symmetric
in the sense that they assume the same cost function for mis-
classified instances from different classes. However, in spam
filtering, the cost for misclassifying ham is much higher than
that for misclassifying spam, which requires cost functions
that are asymmetric for the two classes. In this section, we
therefore present the Boosting with Different Costs method.
It uses two different cost functions for ham and spam, with
an emphasis on classifying ham correctly. In each round of
boosting, moderately misclassified spam (the absolute value
of the margin is small) have large weights, whereas extremely
misclassified spam (the absolute value of the margin is large)
will have small weights instead, since they tend to be noise.
In contrast, all the misclassified ham have large weights. In
this way, the base classifier trades off correct classification
of extremely misclassified spam for better classification of
all ham and the remaining spam, thus ensuring a low false
positive rate of the strong ensemble classifier.

3.1 Cost Functions in BDC
Suppose that a data point is labeled as yi = −1 for ham,
and as yi = 1 for spam. The cost functions used in BDC are

1A logistic regression model is often regularized by adding a
term to the model in the form of a penalizing distribution on
the parameters in the model. This type of regularization will
not fit into the MarginBoost framework, because we cannot
in this case express a suitable cost function of the margin
only.



as follows

Ham: Ch(yF (x)) = ln(1 + exp(−yF (x))) (7)

Spam: Cs(yF (x)) =
α

1 + exp(γyF (x))
(8)

where α and γ are two positive parameters that control the
shape of the cost function for spam relative to that for ham.
Note that here the two cost functions are designed for spam
filtering. In general, BDC could work with any two cost
functions that satisfy the differentiability condition men-
tioned in Section 2.2. Figure 1 compares the two costs as
functions of the margin (α = 1 and γ = 1). From this figure,
we can see that when the margin is positive, which corre-
sponds to correct classification, both functions will output
a small cost. On the other hand, when the margin is nega-
tive, the cost for ham increases at a higher and higher rate as
the margin becomes more negative, until it approximates a
linear function for extremely misclassified instances. In con-
trast, the cost for spam almost remains unchanged at very
negative margins. That is, if a spam message is extremely
misclassified, the further decrease in the margin will not in-
crease the cost.
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Figure 1: Cost functions for ham and spam

For iteration t of BDC, as in MarginBoost, we need to calcu-
late the weight for each training instance. As mentioned in
Subsection 2.1, this weight is in proportion to the negative
first derivatives of the two cost functions, i.e.

Ham:Dt(i) ∝−C′h(yiF (xi)) =
exp(−yiF (xi))

1 + exp(−yiF (xi))
(9)

Spam:Dt(i)∝−C′s(yiF (xi))=
αγ exp(γyiF (xi))

(1+exp(γyiF (xi)))
2 (10)

In Figure 2, we compare the negative first derivatives as
functions of the margin (α = 1 and γ = 1). From the figure,
we can see that misclassified ham always have a large weight;
while misclassified spam get a large weight iff the margin is
close to zero.
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Figure 2: Weight functions for ham and spam

The advantages of the weighing scheme in BDC are two-fold.

Firstly, in spam filtering, the training set is always noisy to
some extent, and the outliers tend to be difficult to clas-
sify as their given labels. If a training instance is extremely
misclassified (the margin is very negative), it is quite likely
to be an outlier. In existing boosting algorithms, as more
and more base classifiers are combined into the strong clas-
sifier, the outliers will have larger and larger weights, and
the subsequent base classifiers will end up fitting the noise.
From this perspective, since BDC assigns small weights to
extremely misclassified spam, it is able to discard some noisy
spam. Secondly, in spam filtering, people would rather re-
ceive a few pieces of spam than losing a single piece of ham.
In BDC, the weight of misclassified ham is always high,
which ensures that the combined classifier will have a low
false positive rate.

3.2 BDC Algorithm
Based on the MarginBoost framework, we summarize the
BDC algorithm in Figure 3. Initially, each training instance
is assigned the same weight. In each iteration, the weak
learner selects a base classifier that maximizes the inner
product in (4). After the coefficient wt+1 is chosen by line
search, the weights of the training instances are updated
based on the negative first derivative of the ham and spam
cost functions Ch and Cs with respect to the margin for the
newly combined classifier. The iteration process is stopped
when the inner product in (4) is less than or equal to zero, or
when we reach a prespecified maximum number of iterations
T .

Let D0(i) = 1/m for i = 1, . . . , m.
Let F0(x) = 0.
For t = 0 to T do

Let ft+1 = arg maxf∈F
∑m

i=1 yif(xi)Dt(i).
If

∑m
i=1 yift+1Dt(i)(xi) ≤ 0 then
Return Ft

End if
Choose wt+1 by line search.
Let Ft+1 = Ft + wt+1ft+1

For i = 1, . . . , m do

Let Dt+1(i) =

{ −C′h(yiFt+1(xi)) for yi = −1
−C′s(yiFt+1(xi)) for yi = 1

End for

Let Dt+1(i) =
Dt+1(i)∑m

i=1 Dt+1(i)
for i = 1, . . . , m.

End for
Return Ft+1

Figure 3: BDC algorithm

3.3 BDC at Low False Positive Region
A commonly used performance measure in spam filtering is
the ROC curve, which is obtained by varying the threshold
of the classifier. In the ROC curve, false negative rates at the
low false positive region are of particular interest. Compared
to boosting algorithms with symmetric cost functions, or
symmetric boosting, BDC tends to have lower false negative
rates in the low false positive region.

Figure 4 is an illustrative example of the process causing
this phenomenon. The ticks on the axis correspond to the
training instances. The +/– above each tick labels an in-
stance as spam (+) or ham (–). According to some decision
threshold on the axis, instances to the left of this threshold



are classified as ham and instances to the right as spam. The
further an instance is to one side of the threshold, the more
confidence the classifier has in the decision. The dashed line
perpendicular to the axis in Figure 4(a) marks the decision
threshold for Ft(x). The left most + in this figure therefore
represents a noisy spam message. The numbers following
FP (FN) are the false positive rates (false negative rates)
in terms of the number of false positive (false negative) in-
stances if the decision threshold of the classifier is drifted to
the corresponding position on the axis. If we apply BDC,
the misclassified ham (the instance marked as – on the right-
hand side of the threshold) will have a large weight, but the
noisy spam (the instance marked as + far out on the left-
hand side of the threshold) will have a small weight. After
one base classifier is added to Ft(x), the classifier is able to
better classify ham and all but the noisy spam (Figure 4(b)).
In contrast, if we apply symmetric boosting, the misclassi-
fied spam will have the largest weight of all instances, and
the classifier may end up correctly classifying this instance
or just lowering the confidence in the misclassification. This
improvement may come at a slight expense in the confidence
of correctly classified instances (Figure 4(c)).

Comparing Figure 4(b) and Figure 4(c), at FP value zero,
FN using BDC decreases from two to one, while FN using
symmetric boosting stays at two. This suggests the advan-
tage of BDC over symmetric boosting in the low FP region,
which is a desirable property in spam filtering. On the other
hand, at FP value four, FN using BDC is one, whereas FN
using symmetric boosting is zero, which suggests that BDC
may not be as good as symmetric boosting in the high FP
region.
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Figure 4: a) Current classifier. b) After one iter-
ation in BDC. c) After one iteration in symmetric
boosting.

4. PARAMETER STUDY IN BDC
In BDC, we need to set the value for the positive parameters
α and γ in the cost function for spam. From (8), we can see
that α is the maximum cost for spam, and that the cost for a
spam message with F (x) = 0 is α/2. By setting the value of
α, we are implicitly performing stratification. The smaller
α is, the less important spam is compared to ham.

If we approximate Cs(yF (x)) in (8) by a first order Taylor
expansion around yF (x) = 0, we have

Cs(yF (x)) ≈ α(0.5− 0.25γyF (x)) (11)

Thus, with α fixed at a certain value, the γ parameter con-
trols the slope of the cost. The larger γ is, the faster the
cost changes with the margin around yF (x) = 0, and vice
versa.

We study the effect of the two parameters on the perfor-
mance of BDC using three noisy data sets, constructed from
the synthetic data set illustrated in Figure 5. In this data
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Figure 5: Synthetic data.

set, the inner ball and the outer circle represent the positive
and negative classes, respectively. The noisy data sets are
constructed by assigning an incorrect class label to each of
the data points with a small probability. We have gradually
increased the noise level, and generated three data sets with
noise probabilities 0.03, 0.05, and 0.1. For different settings
of the parameters α and γ, we generate the corresponding
ROC curves by varying the threshold of the classifier. Since
we are only interested in classification results at low false
positive rates, we only compare FN rates at FP rates 3%,
5%, and 10% in the ROC curves, which will provide a gauge
to how the ROC curve will behave in the low false positive
region. The averaged results for 4-fold cross validation are
summarized in Figure 6. The first row of experiments shows
FN rates with varying α and fixed γ = 1 for the three noisy
data sets, and the second row shows similar results with
varying γ and fixed α = 1.
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Figure 6: In each of the six experiments, the three
curves correspond to: upper curve: FN at FP 3%;
middle curve: FN at FP 5%; lower curve: FN at
FP 10%. The first row illustrates the effect of α
with γ = 1, and the second row, the effect of γ with
α = 1. The three columns correspond to the three
data sets with noise probabilities 0.03, 0.05, and 0.1,
respectively.



From the figure we see that the performance of BDC is close
to optimal over a wide range of the parameter values. In
other words, the results are not very sensitive to specific
parameter values as long as they are within a reasonable
range. This observation suggests a simple way of selecting
parameter values in real applications: using a hold-out test
set or via cross validation, perform a simple line search for
one parameter while fixing the other, and iterate this process
until performance does not improve further. The line search
could be as simple as just sampling a number of parameters
within an allowable range, and then pick the best one. In our
empirical experiments, this simple scheme always converges
to a good parameter setting.

5. EXPERIMENTAL RESULTS
In this section, we use a large spam corpus to compare BDC
with state-of-the-art spam filtering techniques. Both the
training and test sets are from the Hotmail Feedback Loop
data, which is collected by polling over 100,000 Hotmail
volunteers daily. In this feedback loop, each user is pro-
vided with a special copy of a message that was addressed
to him, and is asked to label this message as ham or spam.
The training set consists of messages received between July
1st, 2005 and August 9th, 2005. We randomly picked 5,000
messages from each day, which results in a total number
of 200,000 email messages used for training. The test set
contains messages received between December 1st, 2005 and
December 6th, 2005. 10,000 messages were drawn from each
day, resulting in a collection of 60,000 messages. From each
message, we extracted features consisting of subject key-
words and body keywords that occurred at least three times
in the training set. The total number of binary features
is over 2 million. Please refer to Yih, Goodman & Hulten
(2006) for a detailed description of a similar corpus.

The methods used for comparison include: logistic regres-
sion (LR), regularized logistic regression, regularized logistic
regression with stratification, LogitBoost2 (LB), and Log-
itBoost with stratification. We regularized LR the stan-
dard way by multiplying the likelihood with a Normal prior
N (0, σ2) on the parameters in the model. To determine
the parameter values in each method—σ for regularization
in LR, the stratification factor for LR and LB, and α, γ
in BDC—we split the training set into two sets of 100,000
messages each: one for training the classifier with different
parameter settings, and the other for validating the per-
formance of the trained classifier. The values leading to the
lowest FN at low FP regions are assigned to the parameters.
With the chosen parameter values, we train the classifiers
again, this time using the whole training set, and compare
the results for the different methods on the test set.

With BDC, LogitBoost, and LogitBoost with stratification,
we have considered decision trees of depth one (decision
stumps) and depth two (which generates features similar
to co-occurrence features) as the base classifiers. We have
also tried two criteria for stopping the iteration procedure in
the boosting algorithms: 1) setting the maximum number of
base classifiers, and 2) setting the minimum decrease in the
loss function between two consecutive iteration steps. The

2Different from LogitBoost in Friedman (2001), here, the
weight wt is obtained by line search.

results using these two methods are quite similar, so we only
present the results obtained with the first stopping criterion.
Experiments with decision stumps are stopped after includ-
ing 4000 base classifiers in the ensemble, and experiments
with decision trees of depth two are stopped after including
2000 base classifiers. Finally, recall from Subsection 2.2 that
although LB and LR optimize parameters in different ways,
the models obtained by LB with decision stumps are similar
to the models obtained by LR with a smart selection of the
most dominant features (< 4000).

Figures 7 and 8 compare the ROC curves at the low false
positive region from zero to 0.2 for all of the considered
methods by varying the threshold of the associated classifier.
The two figures show the resulting curves for the boosting
methods with decision stumps and with decision trees of
depth two as base classifiers, respectively. The curves for
the logistic regression methods are the same in these figures.
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Figure 7: ROC curves for BDC, LB, and LR meth-
ods. The base classifiers in BDC and LB methods
are decision stumps.

From Figures 7 and 8, we can make the following conclu-
sions: 1) As is desirable for spam filtering, at the low false
positive region, BDC with simple base classifiers (decision
stumps) outperforms BDC with complicated ones (decision
trees of depth 2), and actually performs the best of all the
methods reported here; 2) in both of the base classifier set-
tings, BDC is among the best methods in the low false pos-
itive region; 3) the improvement of BDC over LB or LB
with stratification is more obvious with complicated deci-
sion trees than with simple ones, showing that BDC is more
resistant to overfitting than LB based methods; 4) no mat-
ter with LR or LB, stratification always improves over the
original methods in the low false positive region.

Considering the storage space and the runtime for a de-
ployed classifier, the size of the classifier trained by BDC is
a lot smaller than that trained by LR based methods. For in-
stance, with 4000 decision stumps, the number of coefficients
used in the classifier trained by BDC is at most 4000 (differ-
ent base classifiers may involve the same feature), compared
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Figure 8: ROC curves for BDC, LB, and LR meth-
ods. The base classifiers in BDC and LB methods
are decision trees of depth two.

with more than 2 million coefficients used in the classifier
trained by LR based methods.

Finally, it is worth mentioning that the above results are
for a spam classifier solely based on text features, and does
not reflect the performance of a full commercial system. In
commercial systems, a text based classifier is only one com-
ponent of a larger system involving IP blocklists, IP safelists,
user supplied blocklists and safelists, etc., where each com-
ponent helps driving the spam system to even better perfor-
mance. Better performance obviously creates more satisfied
users, but it also results in significant storage savings for the
email provider. For example, the throughput on Hotmail is
well over one billion messages per day, with an average spam
message size of 14Kb. If messages classified as spam (at a
fixed low false positive rate) are deleted right away, storage
of more than 140Gb daily spam messages are avoided per
percent improvement.

6. RELATED WORK
Recently, boosting has been applied to spam filtering. In
Carreras and Marquez (2001), the authors consider several
variants of the AdaBoost algorithm with confidence-rated
predictions, and compare with Naive Bayes and induction
of decision trees, reaching the conclusion that the boosting-
based methods clearly outperform the baseline learning algo-
rithms on the PU1 corpus. The authors of Androutsopoulos
et al. (2004) also apply LogitBoost, as well as Support Vec-
tor Machines, Naive Bayes, and Flexible Bayes on four spam
data sets, so as to examine various aspects of the design of
learning-based anti-spam filters.

On the issue of good classification of spam at low false pos-
itive (spam) rates, Yih, Goodman and Hulten (2006) pro-
pose a two-stage cascade classifier. The first-stage classifier
is trained on all data, and classifications as ham by this clas-
sifier are not further contested. Classifications as spam, on
the other hand, are sent to the second-stage classifier, which

is trained from cases classified as spam during the training of
the first-stage classifier. The suggested cascading technique
can be combined with any type of classifiers, including BDC,
and may even result in further improvement.

Viola and Jones (2002) also suggests a cascade of classifiers.
Starting with very simple classifiers at early stages of the
cascade and gradually increasing the complexity, the clas-
sifier is very fast, because most cases in the domain they
consider are easy negatives. Their classifier further ensures
good performance at low false positive regions by training
each classifier in the cascade by an asymmetic variation of
AdaBoost that weighs false negatives differently than false
positives during training. - Very much in the spirit of strat-
ification.

Recently, there has also been great interest in algorithms
for ranking. In particular Rudin (2006) has derived a very
flexible boosting-style algorithm, designed to perform well
on the top of the ranking list at the expense of possible
misrankings further down the list. A parameterized cost
function controls this tradeoff. We may consider the asym-
metric spam classification problem as a special instance of
this framework. By pushing ham to the top of the list at
the expense of rankings further down the list, this skewed
ranking is in effect concentrating on the low false positive
region of the ROC.

Finally, the proposed BDC combines boosting and cost-
sensitive learning in a natural way. A closely related work
is AdaCost proposed in Fan et al. (1999). It uses the cost
of misclassifications to update the training distribution on
successive boosting rounds. The purpose is to reduce the
cumulative misclassification cost more than AdaBoost. The
difference between AdaCost and BDC is that, the former re-
lies on a pre-specified cost for each training instance, while
the latter provides a reasonable way of obtaining those costs.

7. CONCLUSION
In this paper, we have proposed a new asymmetric boosting
method, Boosting with Different Costs, and applied it to
email spam filtering. In BDC we define two cost functions,
one for ham and one for spam, according to practical needs.
In each round of boosting, misclassified ham always have
large weights. Moderately misclassified spam also have large
weights, but extremely misclassified spam will have small
weights. In this way, BDC is able to focus on the ham
messages and the more characteristic spam messages at the
expense of the more difficult or noisy spam messages. BDC
will therefore improve the false negative rates at the low
false positive region in the ROC curve, as demonstrated for
the spam filtering data investigated in this paper.
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