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Abstract

The increasing use of email for phishing and unsolicited mar-
keting has reduced the trustworthiness of email as a commu-
nication medium. Sender authentication is a known defense
against these attacks. Existing proposals for sender authenti-
cation either require infrastructural support or break compat-
ibility with existing email infrastructure. We propose, imple-
ment, and evaluate social-group key authentication, an incre-
mentally deployable and backward compatible sender authen-
tication mechanism for email. Our solution requires honest
majority instead of trust infrastructure or human input forcor-
rectness. In accordance with the end-to-end principle, authen-
tication is implemented at the mail client by executing our pre-
viously proposed Byzantine fault tolerant public key authen-
tication protocol [11] as an overlay on top of the mail trans-
port protocol. We evaluated the authentication overhead byin-
strumenting our Thunderbird authentication plugin with syn-
thetic data and found a user visible latency increase of about
200ms. Real life usability of the authentication mechanism
is investigated with two anonymized email traces. Our results
show that about40% of the peers can be authenticated over the
92 day trace period without adding any new messages to the
email network. Adding a small fraction of extra email mes-
sages permits more than90% of the peers to be authenticated
within a week.

1 Introduction

Electronic mail is one of the most popular applications on the In-
ternet. Unlike traditional mail that can be signed by hand, elec-
tronic mail does not have a built-in authentication mechanism. In
particular, the absence of sender authentication makes it possible
to spoof sender identity. It is also possible to modify message con-
tents en-route because messages do not carry digital signatures,
which could provide message authentication. The lack of sender
authentication and message authentication limits the effectiveness
and trustworthiness of electronic mail. It is non-trivial to deter-
mine the true identity of the sender because messages could be
spoofed, i.e. appear to be from a different sender than the real
sender. The low cost of sending electronic mail coupled withease
of spoofing has led to a flood of spam on the Internet. Having
sender authentication would not only contain spoofing, but also
enable tackling the spam problem by using authenticated sender
identities to classify messages as trusted or otherwise. Similarly,

message authentication would increase trustworthiness ofelec-
tronic mail making it more effective for personal and business
use. These motivations make sender authentication and message
authentication important enhancements to electronic mail.

While the original electronic mail specification [5, 10] does not
address authentication, the S/MIME enhancements [12, 13] have
added support for message authentication. Message authentica-
tion in S/MIME depends on sender authentication, which is pro-
vided by an external public key infrastructure (PKI). This works
well in an organizational setting, where a central trusted party can
certify public keys associated with all the mail addresses.How-
ever, the centralized trust model becomes unsuitable for commu-
nications across organizational boundaries or for privatecommu-
nication through free email systems. Since the email user base
is decentralized with peers belonging to different logicaltrust do-
mains, the authentication infrastructure should be decentralized
too. This requirement is not addressed by the S/MIME standard.
A popular security add-on for electronic mail is Pretty GoodPri-
vacy or PGP [18]. It allows users to authenticate public keysof
other users in a peer-to-peer manner. Its reliance on human judg-
ment of trustworthiness makes it suitable for sophisticated email
users [16]. Considering the vast user base of decentralizedand
unsophisticated email users, we believe that a widely acceptable
electronic mail authentication solution must support the following
requirements:

1. Operate without depending on centralized third parties for
authentication decisions.

2. Provide autonomous operation with minimal human inter-
vention.

1.1 Our solution

Our social-group key authentication proposal for email is de-
scribed and evaluated in this paper. The proposed solution is an
instantiation of our Byzantine fault tolerant public key authenti-
cation protocol [11], which supports soft authentication of public
keys without centralized infrastructure. The public key authenti-
cation protocol runs as an overlay on top of the mail transferpro-
tocol [8], thereby supporting incremental deployment and back-
ward compatibility. Digital signatures [9] are generated from the
authenticated public keys in order to provide sender and message
authenticity to email.

Our public key authentication protocol provides eventual authen-
tication. This means that users may receive digitally signed mes-
sages from peers whose public keys are yet to be authenticated.



Figure 1: The big picture: public key authentication.A authenticates the public key ofB.

Since the underlying public key authentication protocol isau-
tonomous and decentralized, social-group key authentication in-
herits these characteristics. Authentication is supported without
additional infrastructure or human input, and is thereforecompat-
ible with the usability requirements described above. Our solution
allows incremental deployment and preserves compatibility with
existing email infrastructure. In summary, this paper makes the
following two contributions:

• We implement social-group key authentication for email.
Our solution is automatic, Byzantine fault tolerant, eventu-
ally correct, incrementally deployable, backward compati-
ble with the existing email infrastructure, and does not use
trusted third parties.

• Performance of the proposed solution is investigated through
micro-benchmarks, simulation on an industrial and an aca-
demic email trace, and live experimentation on an instru-
mented mail authentication prototype.

2 Preliminary

This section provides an outline of our previously proposed
Byzantine fault tolerant public key authentication protocol
(BPKA) described in [11]. It allows peers to mutually authenticate
self-generated public keys as shown in Figure 1. Peers whosepub-
lic keys are already authenticated are called trusted peers. Trusted
peers can authenticate public keys and detect malicious behavior
under an honest majority assumption.

The BPKA protocol consists of authentication and group man-
agement tasks. The operations CHALLENGE RESPONSE, DIS-
TRIBUTED AUTHENTICATION, and BYZANTINE AGREEMENT

support autonomous authentication of public keys in the presence
of malicious peers. The CHALLENGE RESPONSEoperation is
used by individual peers to gain evidence of public key authen-
ticity. This evidence is shared among trusted peers throughthe
DISTRIBUTED AUTHENTICATION operation. Lack of consensus
on authenticity implies the presence of malicious or faultypeers.
The lack of consensus is resolved through the optional BYZAN -
TINE AGREEMENToperation, which permits peers to identify and
ignore malicious and faulty peers.

Group management operations maintain honest majority among
the trusted peers. The GROUP M IGRATION operation maintains
a trusted group of peers by periodically recycling older trusted
peers. This protects honest majority in the trusted group byavoid-
ing the accumulation of covertly malicious peers. The BOOT-
STRAPPINGoperation initializes the authentication system by pro-
viding the initial trusted group. In this paper, we use the BPKA
protocol as a black box and refer readers to the original paper for
more details about BPKA protocol [11].

3 Social-group key authentication protocol

The secure association of public keys to email addresses is re-
ferred to aspublic key authenticationin this paper. This section
explains how the previously proposed BPKA protocol [11] is ap-
plied to the email environment.

3.1 Email Setup and Security Model

The BPKA protocol assumes that the participating peers are iden-
tified by their network addresses, which are email addressesin the
context of this paper. Based on this premise, we do not distinguish
the email addressA from the user who uses that address. We as-
sume that every userU has a public key (KU ) and a private key
(K−1

U ). Every email message contains the public key of the sender
and is signed by the sender using his or her private key.

The BPKA protocol requires that the asynchronous network con-
necting the peers provide delivery failure notifications for non-
existent destinations. The network should support eventual deliv-
ery on retransmissions, and not become permanently partitioned.
Assuming that temporary failures in the email network are even-
tually repaired, the email network satisfies these requirements [8].

Public keys are authenticated with help of a group of peers called
the trusted group:

DEFINITION 1 (Trusted Group) Thetrusted groupis used for
authenticating public keys of new peers. On authenticationof its
public key, the new peer becomes part of the trusted group. The
public key of every peer belonging to the trusted group is known
and trusted.
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Figure 2: Challenge response in BPKA protocol [11].A uses the
noncerA to authenticate the public keyKB of B in absence of
man in the middle attack.
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Figure 3: Distributed authentication in BPKA protocol [11]. A

authenticates the public key ofB by gathering authentication
votes from its trusted peers.

The trusted group is initialized from the address book of theuser.
Because the authentication protocol requires message transfer be-
tween trusted peers, additional extension fields are added to email
headers.

DEFINITION 2 (Email Header Extension) The fol-
lowing email header extension fields are used by
social-group key authentication protocol for public key au-
thentication1:

• X-Bft-Auth-PublicKey : public key of the sender.

• X-Bft-Auth-Data : unauthenticated public key of other peers,
nonces, cipher text, or trust decisions.

• X-Bft-Auth-MesgInfo : the protocol operation that sends out
the message and the specific stage within that operation (for
operations that have multiple stages). Protocol operations
can be one of the following: EmailPeer , EmailResponse ,
or Infer Trust.

• X-Bft-Auth-Signature : digital signature signed with the pri-
vate key of the sender.

Using SMTP extension header fields for carrying
social-group key authentication data provides backward compati-
bility. The email messages sent by the authentication enabled mail
clients would contain social-group key authentication protocol
messages, which are processed by the email clients supporting
the protocol. The additional protocol messages are ignoredby
other email clients because email systems should ignore unknown
extension headers [10].

3.2 Adversarial Model

We assume the following strong adversarial model. Adversaries
mounting passive attacks are allowed to overhear all the commu-
nication between peers. The active attacks are restricted compared
to the classical “network is the adversary” model as follows: The
active adversaries have unlimited spoofing power, i.e., they can
inject arbitrary messages into the network. However, they have
limited power to prevent message delivery. In particular, for the
BPKA protocol to operate at a peerP , it should be impossible
to prevent (eventual) message delivery for more than a fraction φ

of P ’s peers [11]. We note that since email servers are widely

1Bft in the email headers stands for Byzantine fault tolerance.

distributed, a practical value ofφ is zero for general email com-
munication over the Internet.

Peers in the trusted group can be honest, malicious, or faulty. The
protocol does not distinguish between the latter two cases,but pro-
vides public key authentication service to the honest peers. The
protocol correctly authenticates the public keys of honestpeers if
the trusted group has honest majority.

DEFINITION 3 (Honest Majority) A trusted group hashonest
majority if fewer thant of then trusted peers are malicious or
faulty, wheret = 1

3
n. A peer is malicious if it does not follow the

protocol correctly, and faulty if its authentication vote is incorrect.

For example, a faulty peer may suffer man-in-the-middle attacks
causing it to vote incorrectly while a malicious peer may inten-
tionally give wrong authentication votes [11].

3.3 Our Protocol

Our social-group key authentication protocol has the follow-
ing operations: EmailInit, Email Peer, EmailResponse, and
Infer Trust. The protocol operations are described below along
with the exchanged messages. For brevity, only the contentsof X-
Bft-Auth-Data and X-Bft-Auth-MesgInfo email extension head-
ers are described. The remaining extension headers are popu-
lated as follows: Public key of the sender is stored in X-Bft-Auth-
PublicKey extension header, and the X-Bft-Auth-Signatureexten-
sion header stores the digital signature created with the sender’s
private key.

• Email Init: Alice receives an email message from Bob whose
public keyKBob is not authenticated.

Bob → Alice

• Email Peer: This operation is run by Alice. Alice emails
the peers in her trusted groupA1, . . . , An for authenticat-
ing KBob, the unauthenticated public key of Bob. The email
message has type EmailPeer in the X-Bft-Auth-MesgInfo
header, and keyKBob in the X-Bft-Auth-Data header. For
all i ∈ [1, n], we use below formula to represent the email
message sent by Alice to peerAi in her trusted group.

Alice → Ai KBob



• Email Response: This operation is run by eachAi with the
participation of Bob. As shown in Figure 2, the peerAi

runs the CHALLENGE RESPONSEoperation of BPKA pro-
tocol [11] and decides if the public keyKBob of Bob is au-
thentic or not. The challenge consists of a random number
rAi

chosen byAi and encrypted withKBob, the supposed
public key of Bob. In response, Bob is expected to recover
the random numberrAi

chosen byAi, and demonstrate its
ownership of the public keyKBob. The detailed steps of
this operation are given below. Each message has the type
Email Response stored in the X-Bft-Auth-MesgInfo header.

Ai → Bob KBob(rAi
)

Bob → Ai rAi

Ai → Alice TAi
(Bob)

Each peerAi emails back itstrust voteTAi
(Bob) to Alice.

The trust vote consists of the signed challenge message sent
by Ai, the signed response sent by Bob, and a true or false
vote on authenticity.

• Infer Trust: This operation is mainly run by Alice and may
also require the participation of Alice’s peers and Bob. Al-
ice’s inputs are the trust votes received from her peersAi. If
the trust votes are in agreement on the authenticity ofKBob,
then Alice decides according to the unanimous decision of
her peers.

If Alice receives disagreeing trust votes from her peers, she
initiates the BYZANTINE AGREEMENT operation of BPKA
protocol, which allows Alice to determine who among Bob
or her peers is malicious or faulty. Note that Bob needs to
participate in the BYZANTINE AGREEMENT step because
either Bob or any of Alice’s peers may be malicious or
faulty [11]. Alice sends the vector of received trust votes
to Bob and her peersAi. On receipt of this message, Al-
ice’s peers and Bob exchange the trust vote vectors among
themselves. Using the symbol “|” to denote multiple sources
or destinations, the messages exchanged in this protocol op-
eration are shown below. Each of the messages contains
Infer Trust in the X-Bft-Auth-MesgInfo header.

Alice → Ai|Bob TAi
(Bob)

Ai|Bob → Aj TAk
(Bob)

Alice decides whether or not to trust Bob’s key by majority
on the trust votes. This part of the authentication protocol
also permits Alice and her peers to identify and exclude ma-
licious or faulty peers from trusted groups.

3.4 Security of our protocol

Our social-group key authentication protocol is secure against the
adversarial model defined in Section 3.2, assuming the trusted
group has honest majority (See Definition 3). Our security isdi-
rectly based on the security of the existing BPKA protocol [11].
The proof of security is omitted here.

4 Implementation of email authentication plugin

We implemented peer-to-peer sender authentication as a plugin
for Thunderbird email client from the Mozilla application
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Figure 4: Authentication plugin architecture.

suite. The plugin is available for public download at
http://discolab.rutgers.edu/byzantine/ . This sec-
tion outlines the design issues, application choices, and practical
considerations encountered during its design and implementation.
An overview of the plugin architecture is also provided.

The Mozilla suite of applications [1] allows developers to extend
application functionality by developing plugin. XPCOM objects
are the basic unit of plugin development. These objects allow run
time linking and expose their interface through a compiled inter-
face definition file. A compiled XPCOM object can be accessed
as a first class Javascript object from the user interface control-
ling scripts. The user interface itself is defined through the XUL
user interface language with Javascript making XPCOM callson
receiving user interface events. The entire package of compiled
XPCOM objects, user interface elements, and controlling scripts
is referred to as a plugin. We followed the standard procedure [3]
to embed BPKA library [11] in Thunderbird in order to provide
social-group key authentication for email.

The email authentication plugin architecture is shown in Figure
4. Authentication Adapteris the XPCOM object that exposes the
authentication interface. It is statically linked to the Byzantine
fault tolerant public key authentication (BPKA) library [11]. This
interface provides authentication protocol messages, which are at-
tached to outgoing emails, and consumes authentication protocol
messages from incoming emails. The authentication interface also
contains calls to query and to authenticate public keys associated
with email addresses. The authentication adapter functionality is
used for implementing social-group key authentication. The au-
thentication functionality is exposed to the user and integrated into
the Thunderbird email client through theScripted Extension Ac-
cessmodule. The authentication plugin is easy to install. It pro-
vides automatic email authentication to unsophisticated users.

5 Overlay considerations

We use SMTP extension headers to create an overlay for the
social-group key authentication protocol. This maintainscompat-
ibility with existing email infrastructure. Running the protocol as
an overlay on top of email introduces performance limitations and
design constraints. This section investigates these issues in or-
der to choose implementation parameters that are practicalin the
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email environment.

5.1 Trusted group size limits

The overhead of BPKA protocol was bench-marked through a
simulation that investigates the cost of public key authentica-
tion [11]. The cost of the protocol depends on various controllable
parameters like bootstrapping group size, trusted group size, pro-
bationary group size, and the rate of authentication of new peers.
These parameters must be selected in order to match the compu-
tational and messaging power available in typical email systems
with the requirements of the protocol.

The authentication protocol can operate as an overlay abovethe
mail transport by using the extension fields defined in SMTP.
This is in line with many anti-spam implementations. However,
SMTP mail transfer agents impose a limit on maximum header
size. This is done to avoid denial of service attacks. For exam-
ple, sendmail, a popular UNIX mail transfer agent, supports
the maximum header size of32 KB. This limits the maximum
authentication payload that can be attached to a single message.
Since the authentication protocol requires increasing amounts of
messaging overhead with increasing trust group size, the maxi-
mum group size that can be supported in the overlay is limited.
Using a public key size of1Kb, and ZLIB library for compres-
sion, we tested the final header load for different authentication
message payloads. A moderate value of300 authentication mes-
sages was chosen in order to impose less than10KB overhead on
the mail header.

Messaging cost of authentication depends on the trusted group
size and the rate of discovery of new peers. The budget of300
authentication messages per email affects the maximum sizeof
trusted group that can be maintained. Getting hold of mailbox
statistics is challenging because of privacy issues. Therefore, we
gathered statistics of unique mail addresses and number of mes-
sages from the mailboxes of a few colleagues. The results indi-
cate that about20% of the messages are sent to, or received from
new peers that need to be authenticated. Applying this ratioto
the limit of 300 authentication messages per email, we can afford
1500 authentication messages per un-authenticated peer. Our pre-
vious simulation results in [11] indicate a maximum trustedgroup
size limit of75 peers for this messaging cost. This upper limit on
trusted group size is designed into the system.

5.2 Bootstrapping trusted groups

To determine a meaningful heuristic for generating bootstrapping
trust groups, we analyzed the email communication patternsavail-
able from the anonymized University email trace (describedin de-
tail in Section 6). Figure 5 shows the cumulative distribution of
number of user accounts with respect to email messages sent or
received over a92 day period. We find that a large number of user
accounts are idle with minimal sending and receiving activity. Us-
ing the distribution, we cut off accounts that do not have at least
3 outgoing messages and at least9 incoming messages over the
period of the study. This reduces the number of user accountsin
the study from27, 623 to 715. This active subset of user accounts
is analyzed against two possible heuristics for generatingboot-
strapping trust groups: TheOutgoing heuristicselects bootstrap-
ping peers from destination addresses of outgoing emails. The
Two-way heuristicselects bootstrapping peers from both the des-
tination addresses of outgoing emails and the source addresses of
incoming emails.

The selection heuristics are applied to the mail trace by consid-
ering the first10, 30, and90 days of the trace. Using the initial
subset of the trace is desirable because future communication pat-
terns will not be available in real life. The size of the bootstrapping
group for each mailbox is calculated using the given heuristic and
time window from the mail trace. The cumulative number of mail-
boxes having more than a given number of bootstrapping peersis
plotted in Figure 6. It can be observed that one way communica-
tion is quite common in email as shown by the gap between the
two heuristics. In order to have a frequently communicatingsub-
set of users, we apply the30-day two-way heuristic on the92 day
mail trace. This results in a set of53 peers that have at least4
peers in their bootstrapping group. This subset of active users is
chosen as the experimental base.

5.3 Eager and Lazy modes

The authentication mechanism can be run in lazy or eager modes.
In lazy mode, the authentication plugin does not proactively send
out any email messages specifically for the key authentication pur-
pose. The protocol messages are therefore transmitted entirely
through organically exchanged emails in a piggybacking fashion.
In the eager mode, additional plugin generated email messages
may be sent out to peers. These messages would be automatically



Figure 7: Message processing latency by key length Figure 8: Message processing latency by group size

handled and absorbed at the receiving end plugin, and therefore
would not change the user experience. We note the downside of
eager mode that the added protocol messages may be consumed
by spam filters. This problem can possibly be addressed by hu-
man means, by asking the mail administrators to disable particular
spam filters. However, losing eager mode authentication messages
only causes delay because the lazy mode protocol will eventually
achieve authentication.

6 Experimental evaluation

The objective of experimentation is to characterize clientcosts,
and to establish the suitability of peer-to-peer sender authentica-
tion in a real life scenario. The experimentation is done in two
stages. The first evaluation is a micro-benchmark consisting of
sending and receiving messages from an instrumented authentica-
tion plugin. The second evaluation consists of localized execution
of two anonymized email traces, one from a university and another
from the industry. The details of the traces are given in Table 1.
The university trace is collected from asendmail log behind
the spam filter, while the industry trace is collected from the Inter-
net mail gateway ahead of the spam filter. Statistics are collected
for data overhead imposed on email messages, cache size at the
peers, and the performance of authentication2. Experiments are
also done for comparing the performance of eager and lazy mode
authentication.

6.1 Micro benchmarks

A set of micro benchmarks was conducted on a2.4GHz Intel Pen-
tium 4 desktop running LINUX Fedora Core 5. The objective of
micro benchmarks is to determine the latency introduced by the
addition of authentication plugin in the email processing path. The
added latency of sending and receiving emails was measured for
different public key sizes as shown in Figure 7. The sender cost
was about200ms for all the different public key sizes. Sender la-
tency is dominated by message serialization costs and therefore
does not depend on public key size. On the other hand, the re-
ceiver costs are dominated by the cryptographic operationsof dig-
ital signature verification and responding to challenges. As shown
in Figure 7, the receiver costs increase from85ms at512 bit keys

2Ideally, this data should be collected from real deploymentof the
authentication plugin, but this has practical problems. Firstly, the plugin
would need extensive deployment to be a credible source of experimental
data. Secondly, privacy fears would prevent many users fromallowing
collection of detailed usage reports even if the reports were anonymized.

Trace Number of messagesTime duration
University 1197043 92 days
Industry 2549767 56 days

Table 1: Email traces used for evaluation.

to about500ms for2Kb keys. While both of the costs are within
usability limits, one can observe that receiver processingcan be
done asynchronously in a separate thread. Therefore, one can ex-
pect a net addition of about200ms latency to email operations due
to the authentication plugin.

The effect of trusted group size on authentication plugin overhead
was also measured as shown in Figure 8. The overhead on the
sender increases with increasing trusted group size because of the
increasing overhead of serializing a larger number of messages
for trusted peers. The overhead increased from160ms at trusted
group size of8 to 220ms for a trusted group of18 peers. The
receiver overhead does not depend strongly on trusted groupsize
and takes about65ms. The overhead of compression and making
function calls across the authentication interface were measured
and found to be less than10ms in all the cases. These overheads
are not sensitive to authentication protocol operational parame-
ters, as expected. Sending overhead depends on trusted group
size, while the receiving overhead depends on key size. Since
the overhead introduced by the plugin is less than500ms in all the
cases, it is extremely reasonable from a usability standpoint.

6.2 University workload

As described in Section 5.2, the mail trace is trimmed to email
interactions of53 peers that have bootstrapping groups of size
4 or more. A maximum size of10 is chosen for the bootstrap-
ping group in order to limit the processing time of the trace.The
trimmed trace has873, 752 email messages as compared to the
original 1.19 million. This mail trace is used to drive the au-
thentication system on a single computer. The resulting message
overhead, cache size, and authentication progress are collected
from the logs. We experiment with different values of the follow-
ing controllable parameters of the authentication system:trusted
group size, expiration time for detecting non-liveness of peers, and
the maximum number of protocol messages that can be attached
to an email message.
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Figure 9: Authentication performance vs. selection criterion and size of bootstrapping group.

6.2.1 Bootstrapping group selection

The authentication protocol performance is sensitive to bootstrap-
ping group selection. In order to ensure progress, the initial can-
didates were filtered through a two way communication rule as
discussed earlier in Section 5.2. Experiments were conducted for
understanding the suitable bootstrapping group size in theemail
environment. Bootstrapping groups of sizes8, 16, 32, and64 were
selected as shown in Figure 9. A number of selection methods
were developed. The serial and random methods shown in Figure
9 select bootstrapping peers by first seen, and by uniform random
selection on the candidates respectively. The product criterion
prefers peers with a higher product of sent and receives messages.
The balance criterion prefers bootstrapping group candidates that
have balanced bidirectional communication, i.e. the absolute dif-
ference of sent and received messages is minimized. Sent and
Receive criteria use the number of sent and received messages re-
spectively.

The performance of authentication is measured by the numberof
peers that can be authenticated, and then, averaging over all the
mailboxes. We find that the balanced selection rule has the best
completion performance. This is because the underlying protocol
requires bidirectional communication for progress. The perfor-
mance also increases with smaller group sizes because fewerpeers
can delay authentication. Based on these observations, we select
the trusted group size to be10 peers, and use balanced selection
criterion for populating bootstrapping groups.

6.2.2 Message expiry

The authentication protocol operates as an overlay on the email
infrastructure. As a lazy protocol it is susceptible to excessive log
growth at the peers. We use an explicit message expiry time and
carry it with all the protocol messages. This ensures that each
protocol interaction has a finite life time, and thus the log size is
bounded3. We experimented with a number of practical values

3It was also observed that executing the trace became difficult without
having message expiry. Accumulation of stale messages would severely
impact the performance.
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for message expiry as shown in Figure 10. The effect of message
expiry on authentication performance was found to be marginal.
Therefore, a moderate message expiry interval of15 days was
used in the experiments.

6.2.3 Message overhead

Authentication protocol messages are piggybacked on email
through SMTP extension fields. Because SMTP implementations
limit the mail header size, the number of protocol messages that
can be attached to a single email message is limited. In orderto
understand the overhead introduced by the authentication overlay,
we experiment with message payloads of50 and100 authentica-
tion protocol messages per email message.

The overhead on email messages due to piggybacking of com-
pressed protocol messages is shown in Figure 11. Recall the pay-
load constraint of300 messages and the header size constraint
of 10KB applied in Section 5.1. The observed overhead respects
the constraint, as shown by the flat maximum message overhead
observed for payloads of50 and100 messages. The median over-
head and minimum overhead are shown for the payload value of
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Figure 13: Size of peer caches with day of year
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Figure 14: Completion of authentication

100. The overhead is positively biased because of a few idle peers.
We observe that the experimental message payload values of50
and100 messages are reasonable for use with the32KB header
size limit of SMTP.

6.2.4 Cache usage

Public key infection protocol relies on the lazy propagation of pro-
tocol messages. The messages that are not yet delivered needto
be cached at participating peers. Using the message payloads of
50 and100 protocol messages per email, we study the number
of cached protocol messages as the authentication protocolpro-
gresses. The results are shown in Figure 12.

The number of cached protocol messages shows an increase as the
protocol progresses. The distribution does not show a significant
positive or negative bias as shown by the median being placedin
the middle of minimum and maximum values. The initial trend
shows an increase in number of cached messages as the proto-
col authenticates the bootstrapping peers. The median number of
cached messages stabilizes as the rate of production and expiry
of messages balances out. As shown in the figure, this happens
approximately on the50th day of the trace.

We also note that the maximum permitted payload affects cached
messages. As shown in Figure 12, the maximum number of
cached messages decreases marginally with decreasing payload.
The number of messages is also closely related to the actual size

of the cache as shown in Figure 13.

6.2.5 Lazy mode authentication performance

The authentication protocol results in the authenticationof public
keys of peers. The progress of authentication is shown in Fig-
ure 14. It can be noted that there is a wide disparity between the
progress of authentication between the best peer and the average
performance of authentication. This gap can be attributed to the
fact that most of the email users do not send a lot of messages.The
implementation of authentication as an overlay on SMTP limits
the rate of progress of authentication. Using a trusted group size
limit of 10 peers, payload capacity of100 messages, and a15 day
message expiry interval, the average peer can authenticateabout
35% of its peers of interest in the92 day run.

It is noteworthy that increasing payloads allow faster completion
of the protocol. This is clear from the slower rate of authentication
obtained with a payload of50 messages as compared to100 mes-
sages. This behavior is expected since the progress of the protocol
is constrained by the payload limit, which restricts the immediate
delivery of all possible messages.

The authentication protocol requires challenge response results
from all the trusted peers. However, even one challenge response
result from a trusted peer provides some confidence in the au-
thenticity of the public key being authenticated. This “optimistic
authentication” is also studied as shown in Figure 14. The aver-



Mail Checking Interval Extra Email Ratio Time for80% authentication
Weekly 0.502 14 days
Daily 0.702 2 days

Hourly 7.038 2 hours

Table 2: Overhead and authentication latency for eager modeauthentication.
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Figure 15: Comparative authentication progress with different in-
tervals for eager mode authentication.

age completion of optimistic authentication is at55% at the end
of 92 days, i.e. averaging over all the peers, more than half of the
peers have been authenticated. This progress is satisfactory con-
sidering that the protocol is backward compatible with the mail
infrastructure, has lazy operation, and is fully autonomous.

6.2.6 Eager mode authentication performance

Eager mode authentication performance is evaluated for vari-
ous eager sending intervals. This assumes that human users
typically power up the email client to check for new received
emails even if they do not send out any email. This periodic
powering up of the email client is used for sending out the
social-group key authentication messages to peers. This speeds
up the authentication performance because users who only read
emails can also be used for authentication.

We experimented with various periodic intervals for activating ea-
ger mode. As shown in Figure 15, the rate of authentication seen
by all the peers increases as the periodic interval between eager
exchanges is reduced. The eager protocol results in a substantial
speedup in authentication performance as compared to lazy base-
line authentication. The eager protocol can authenticate more than
90% of the peers within a week if users just check their emails
once a day. This is a huge speedup over the slow rate of authen-
tication seen in the lazy case. The overhead introduced by eager
mode is measured in terms of ratio of additional email messages
sent as compared to the organic email messages captured in the
mail trace. The median of ratio overhead introduced by the ea-
ger mode is very marginal as shown in Table 2. The time
to reach80% completion is about twice the eager send interval as
also shown in Table 2. Thus, the eager mode latency can be usedto
trade off authentication delay for increased messaging overhead.
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Figure 16: Activity profile of user accounts in the industry work-
load

6.3 Industry workload

The second real trace is collected from the Internet mail gateway
of a US corporation. This trace is collected ahead of the spamfilter
and poses a unique challenge for the authentication mechanism.
As shown in Figure 16, while70% of the addresses received more
than100 messages, less than50% sent out more than2 replies
over the56 day period. This is consistent with the large amount of
incoming spam and can be contrasted with Figure 5, which shows
the distribution on the spam filtered university trace.

The authentication protocol authenticates less than2% of peers
in the industry scenario. This can be contrasted with Figure14,
where the authentication protocol can authenticate a much larger
percentage of peers. Analysis of the industry workload shows that
senders outnumber the receivers by about68 to 1. Therefore, most
of the senders are not receivers. Since the authentication protocol
is required to authenticate the public key of a sender, the few re-
ceivers can authenticate only some of the many senders. In order
to interpret this result, we considered the instances wherea re-
ceiver responds to the sender. The industry mail trace had5 such
instances. In two instances, the sender is authenticated bythe re-
ceiver. We defineeffectiveness of authenticationas the fraction
of times a receiver can successfully authenticate the sender. We
find that the effectiveness of authentication on the industry trace
is 40%. In comparison, the university workload has2301 such
instances, and the effectiveness of authentication is36%. There-
fore, the performance of authentication on the industry trace is
comparable to that on the university trace.

7 Related work

The S/MIME extensions to electronic mail can provide senderau-
thentication and message authentication through the centralized
public key infrastructure approach. While this approach issuit-



able in an organization with a well defined trust hierarchy, it is
not suitable for communications that cross organization and trust
boundaries. Our solution allows sender authentication across trust
boundaries making it suitable for general electronic mail use.

A number of sender domain authentication proposals have been
put forward to tackle the spam problem. These include Sender
Policy Framework [17], Sender ID [2], Domain Keys Internet
Mail (DKIM) [4], and accredited DKIM (ADKIM) [7]. All of
these proposals associate cryptographic material and mailsend-
ing policy with the DNS records of domains. This information
is used by receivers to detect forged sender addresses. For ex-
ample, a domainxyz.com could nominate a particular server to
send all the emails for senders in the domain. The receiving mail
transfer agent would check if this policy is being respected, and
refuse to accept emails coming from senders in another domain,
saysomebody@abc.com. These proposed solutions are at the
domain level. In comparison, our solution aims to achieve individ-
ual key authentication, which is at a finer granularity. Using the
end-to-end argument [14], only the application that uses sender
authentication is best equipped to correctly implement it.For ex-
ample, users may want to distinguish senders on the same domain
and be willing to receive email fromfriend@abc.com but not
from stranger@abc.com. This kind of fine grained control
may be complementary to domain level authentication. An ad-
ditional benefit of our approach is that the computational cost of
cryptographic processing is moved away from the mail gateway
to the large number of user desktops.

The widespread use of spam control solutions with false positive
errors has reduced the reliability of electronic mail. Garriss et. al.
propose the use of social information inherent in the communi-
cation patterns to eliminate the false positives of spam filters [6].
However, this work makes stronger assumptions by prohibiting
man-in-the-middle attacks and placing complete trust in the attes-
tation servers that manage attestations of social relationship. Wal-
fish et. al. propose another approach to solve the spam problem
without introducing false positives [15]. This approach enforces
a sending quota in a lightweight fashion but depends on global
trust for quota allocators. Unlike these approaches, our sender au-
thentication solution does not require global trust for anyentity,
resists man-in-the-middle attacks, and provides a useful sender
authentication substrate that can be used to prevent false positives
of spam filters. There are a number of commercial anti-spam so-
lutions that use a challenge response mechanism to authenticate
sender addresses. It can be noted that these solutions affect the
usability of email by delaying the delivery of important messages.
Our work differs from these solutions in two ways. First, while
authentication of a message could be delayed, message delivery is
not affected. Second, while the challenge response step of these
solutions is vulnerable to the man-in-the-middle attack, our solu-
tion resists such attacks.

8 Conclusion and future work

We implement and evaluate social-group key authentication, an
automatic, Byzantine fault tolerant authentication system for
email. Our authentication system operates without trusted
third parties, is incrementally deployable and backward com-
patible with the existing email infrastructure. It is imple-
mented entirely at the mail client in accordance with the end-

to-end principle. This enables the creation of user controlled
fine grained trust policies that can cross organizational and ad-
ministrative boundaries. We have implemented the authen-
tication mechanism on the Thunderbird email client. It is
available as a downloadable Mozilla Thunderbird plugin at
http://discolab.rutgers.edu/byzantine/ .

Our authentication mechanism has been evaluated through micro-
benchmarks, and with two real life mail traces. The evaluation
results show that the overheads are acceptable, and the sender au-
thentication mechanism is effective in real life scenarios. Future
work will focus on handling denial of service and collaborative
spam control. We plan to develop an economic incentive scheme
to handle denial of service attacks. We plan to create content based
spam filters that use collective knowledge from trustworthypeers
to improve spam classifiers.
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