
Filtering Email Spam in the Presence of Noisy User Feedback

D. Sculley
Department of Computer Science

Tufts University
161 College Ave.

Medford, MA 02155 USA
dsculley@cs.tufts.edu

Gordon V. Cormack
School of Computer Science

University of Waterloo
2502 David Centre

Waterloo, Ontario N2L 3GI Canada
gvcormac@uwaterloo.ca

Abstract

Recent email spam filtering evaluations, such
as those conducted at TREC, have shown
that near-perfect filtering results are attained
with a variety of machine learning methods
when filters are given perfectly accurate la-
beling feedback for training. Yet in real-
world settings, labeling feedback may be far
from perfect. Real users give feedback that
is often mistaken, inconsistent, or even ma-
liciously inaccurate. To our knowledge, the
impact of this noisy labeling feedback on cur-
rent spam filtering methods has not been pre-
viously explored in the literature. In this pa-
per, we show that noisy feedback may harm
or even break state-of-the-art spam filters, in-
cluding recent TREC winners. We then pro-
pose and evaluate several approaches to make
such filters robust to label noise. We find
that although such modifications are effective
for uniform random label noise, more realis-
tic “natural” label noise from human users
remains a difficult challenge.

1 Introduction: Noise in the Labels

Unwanted or harmful electronic messages, known as
spam, are a particular problem for electronic mail: it
has recently been estimated that 80% of all email traf-
fic is spam (Goodman & Yin, 2006). Automated spam
filters based on machine learning methods offer a ro-
bust methodology for fighting spam, relying on user to
provide feedback labels of spam or ham (i.e. not spam)
for each message for training updates. Recent evalu-
ations have shown this approach to be startlingly ef-
fective. Best results from the TREC 2007 spam filter-
ing competition were near-perfect with several filters
achieving ROC areas better than 0.9999 (Cormack,
2007a).

However, these promising results were attained in a
laboratory setting where gold-standard feedback was
given to the filters for training. That is, the labels
of spam and ham assigned to each message was care-
fully vetted, and such labeling was done in a consistent
and accurate fashion (Cormack & Lynam, 2005b). In
real-world systems involving users, it is unlikely that
these (possibly anonymous) humans will consistently
give label feedback of gold-standard quality. Instead,
real users give noisy feedback, and the labels used for
training real-world filters may contain errors reducing
classification performance.

1.1 Causes of Noise

Label noise may come from a variety of causes. Sev-
eral different insiders in industrial anti-spam settings
have reported that at least 3% of all user feedback
is simply mistaken. That is, these labels are objec-
tively wrong, on the level of email lottery scams being
reported ham. (This 3% user mistake rate is also re-
ported in Yin, et al., 2006.) Sources of labeling mis-
takes include misunderstanding the feedback mecha-
nisms, accidental clicks, or even users who are actually
fooled by such scams.

Inconsistent labels arise when similar messages are
perceived differently among users. A common example
of this are gray mail messages (such as email newslet-
ters) that some users value and others prefer to block
(Yin, et al., 2007). In a recent paper studying gray
mail, it was found that one sample of 418 messages1

contained 163 gray mail messages – nearly 40% (Yin,
et al., 2007). An additional data point comes from
John Graham-Cumming’s spamorham.org project,2 in
which human users across the internet were invited to
manually label messages in the trec05p-1 data set. In

1This was apparently randomly sampled from a large
corpus of representative spam emails.

2Sadly, this project ended in early 2007 and the
spamorham.org domain is now apparently controlled by
web spammers.



this project, individual human labelers disagreed with
the gold standard labels 10.9% of the time, in large
part due to inconsistency or human error (Graham-
Cumming, 2006).

Finally, maliciously inaccurate feedback is an issue in
large free email systems. For example, a spammer
may acquire many free accounts, send large amounts
of spam to these accounts, and then report such mes-
sages as being ham. Industry insiders at several differ-
ent large free email systems have confirmed that this
is a common tactic by spammers. Indeed, at least one
such system chooses to completely ignore all ham la-
bels given by users.

Thus, the possibility of label noise is an important real-
world consideration for spam filtering. Spam filters
based on machine learning techniques must be robust
to a variety of label noise levels, and not be narrowly
optimized to perform well only in the noise-free case.

1.2 Contributions

This paper makes three main contributions. First, it is
shown that even uniformly random noise in label feed-
back significantly harms the performance of state of
the art spam filters. Second, several modifications are
proposed for making filters robust to label noise, in-
cluding making less aggressive updates, label cleaning,
label correcting, and various forms of regularization. It
is shown that the best of these methods make filters
siginificantly more robust to uniform label noise at a
small cost in classification performance in the noiseless
case. Third, it is found that natural noise from real
users is more challenging than uniform noise.

2 Related Work

There is relatively little published work on the impact
of label noise in spam filtering. However, the problem
of noisy class labels and avoiding overfitting is well
studied in general machine learning literature.

2.1 Label Noise in Email Spam

To our knowledge, this is the first paper to explicitly
explore the problem of label noise in email spam filter-
ing. However, label noise has been considered as an is-
sue by industry experts in spam filtering, and has been
given as a reason to prefer filtering methods that do
not rely on user feedback. Furthermore, the published
acknowledgment of 3% labeling errors in data gained
by the Hotmail Feedback Loop implies that this prob-
lem has been previously studied internally (Yin et al.,
2006). Additionally, Yin et al. (2007) studied a gray
mail detection as a subset of this general label noise

problem. They found that adding a gray mail detec-
tor as the first stage of a two-stage filtering process
reduced false negatives between two and six percent.

2.2 Avoiding Overfitting

In machine learning, it has long been known that over-
fitting is a potential problem when applying optimiza-
tion methods to noisy training data (Mitchell, 1997).
For iterative methods such as gradient descent, early
stopping is a common and effective practice for reduc-
ing overfitting (Mitchell, 1997). In the online filtering
scenario for streaming data the effect of early stop-
ping may be approximated by selecting a conservative
learning rate. Another common approach is regular-
ization, in which a penalty for model complexity is
added to the optimization problem (see, for example,
Scholkopf & Smola, 2001).

The problem of label noise in data has also been well
studied. Zhu and Wu (2004) observed that class la-
bel noise can be even more harmful in training classi-
fiers than feature noise.3 Several methods have been
proposed for cleaning data containing class label noise
by discarding training examples that are suspected
to have incorrect labels (see Zhu and Wu (2004) for
a comprehensive overview.) A more aggressive ap-
proach is label correcting, in which instances suspected
to be mislabeled are automatically re-labeled (Zheng
& Martinez, 2001). Rebbapragada and Brodley (2007)
showed that correcting and cleaning can be considered
within the same unifying framework, but also note that
label correcting is a more difficult task that may in-
troduce additional errors into the data.

3 Label Noise Hurts Filters

We first wished to investigate how well top perform-
ing filters from recent TREC evaluations fared with
respect to label noise. This section describes our basic
experimental design, the filters under consideration,
and results from this first exploration.

3.1 Evaluation

We use the standard online filtering scenario as our
experimental framework, in which messages are pre-
sented to the filter one at a time. For each message,
the filter is asked to give a prediction score of ham or
spam. After the prediction is made, the message’s label
is revealed to the filter, and this information may be
used for a training update (Cormack & Lynam, 2007).

For evaluation, we use the (1-ROCA)% measure that

3In the spam setting, feature noise is typified by the
good word attack (Lowd & Meek, 2005).



has become standard in spam filter evaluation (Cor-
mack & Lynam, 2007). This measure reflects the area
above the ROC curve, expressed as a percentage, and
may be statistically interpreted as the percent chance
that a randomly selected ham message will be erro-
neously predicted by the filter to be more “spammy”
than a randomly selected spam message (Cormack &
Lynam, 2007). The (1-ROCA)% score is computed
over all messages seen by the filter in the online filter-
ing test.

Note that in our experiments the labels given to the
filter during online filtering may be noisy, as described
above. However, the (1-ROCA)% evaluation score is
computed with respect to the gold standard labels sup-
plied with the original data set, which have been care-
fully vetted for accuracy and consistency (Cormack &
Lynam, 2005). Thus, our goal is to assess the impact
of noisy training labels on the filters’ ability to predict
true gold-standard labels. In an ideal world, a small
amount of label noise would do only minimal harm to
the filters’ classification performance.

3.2 Data Sets with Synthetic Noise

For these initial tests, we built noisy data sets from two
large, publicly available benchmark data sets for spam
filter evaluation: the trec06p data set of 37,822 emails
(Cormack, 2006) and the trec07p data set of 75,419
emails (Cormack, 2007), both of which were originally
constructed for the TREC spam filtering competitions.
(All of the noisy data sets used in this paper are pub-
licly available for research purposes; contact the au-
thors.)

For this initial evaluation, we chose to investigate the
effect of uniform, random label noise. (Natural label
noise from actual human feedback is tested in Section
5.2.) Synthetic noise was added to each data set as
follows: for each message, the label of that message
was flipped with uniform probability p. We created
one test set for each data set and each of seven noise
levels, with p = {0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25}. Note
that when p = 0, the test set is identical to the original,
unaltered TREC data set.

3.3 Filters

We tested a range of current statistical spam filtering
methods, as follows. Where noted, parameters were
set by tuning on the separate spamassassin data set4

of 6,032 messages using (1-ROCA)% as the evaluation
measure. Other filters were tested with parameters
set as given by default, or as given in the reference de-
scribing that filter. Unless noted otherwise, the filters

4Available at: www.spamassassin.org

tested used a feature space of binary 4-mers drawn
from the first 3000 characters of each message and
all feature vectors were normalized with the Euclidean
norm (see Sculley and Wachman (2007) for details).

• Multi-Nomial Naive Bayes (MN NB). Vari-
ants of the Naive Bayes classifier (Mitchell, 1997)
have been popular for spam filtering since they
were proposed for this task by Paul Graham
(2002, 2003). Metsis et al. (2006) tested a num-
ber Naive Bayes variants, and found Multi-Nomial
Naive Bayes with binary feature values to be one
of the top performing methods.

• Logistic Regression. To our knowledge, logis-
tic regression was first proposed for spam filtering
by Goodman and Yin (2006). When coupled with
binary 4-mers, this machine learning method gave
best results on several tasks at TREC 2007 (Cor-
mack, 2007a, 2007b). Online logistic regression
has a parameter η that controls learning rate, de-
termining how aggressively to update the model
on each new example. We set to η = 0.1 after
tuning on spamassassin data.

• Perceptron with Margins (PwM). This vari-
ant of the classical perceptron algorithm employs
a fixed update-margin (W. Krauth & M. Mézard,
1987) that functions as a cheap approximation of
the large-margin principle, giving good tolerance
to noise in data (Khardon & Wachman, 2007).
This algorithm was the base learner in an ap-
proach that gave strong results at TREC 2006
(Sculley, et al., 2006). After tuning, we set the
fixed margin m = 8 and learning rate η = 0.5.

• Relaxed Online Support Vector Machine
(ROSVM) This sliding window variant of
the soft-margin Support Vector Machine (see
Scholkopf and Smola, 2001) was recently devel-
oped and proposed for online spam filtering (Scul-
ley & Wachman, 2007). In this work, it was found
that high values of the cost parameter C, encour-
aging little regularization, gave best results for
spam filtering tasks. This result agreed with a
prior finding by Drucker et al. (1999), which also
found that SVMs gain best performance on spam
data with high values of C. Using C = 100, the
ROSVM method gave best results on several tasks
at TREC 2007 (Cormack, 2007a).

• Dynamic Markov Chain Compression
(DMC). Perhaps the best performing of the
compression-based spam filters (Bratko et al.,
2006), DMC was tested at TREC 2007 as wat2

with strong results (Cormack, 2007b).



Table 1: Results for prior methods on trec06p data set with uniform synthetic noise. Results are reported
as (1-ROCA)%, with 0.95 confidence intervals. Bold numbers indicate best result for a given noise level, or
confidence interval overlapping with confidence interval of best result.

trec06p noise noise noise noise noise noise noise
0 0.01 0.05 0.10 0.15 0.20 0.25

MN NB 0.477 0.513 0.517 0.517 0.624 0.665 0.685

(0.425 - 0.535) (0.460 - 0.571) (0.459 - 0.582) (0.459 - 0.583) (0.557 - 0.698) (0.594 - 0.744) (0.620 - 0.758)

LogReg 0.032 0.035 0.118 0.615 2.107 4.914 9.077
(0.025 - 0.041) (0.027 - 0.046) (0.099 - 0.140) (0.558 - 0.677) (1.985 - 2.236) (4.732 - 5.102) (8.774 - 9.390)

PwM 0.049 0.069 0.181 0.577 1.517 3.328 6.666
(0.034 - 0.070) (0.050 - 0.094) (0.149 - 0.221) (0.526 - 0.632) (1.424 - 1.615) (3.173 - 3.491) (6.423 - 6.918)

ROSVM 0.031 0.328 2.430 6.532 11.512 16.852 21.680
(0.021 - 0.044) (0.288 - 0.373) (2.305 - 2.561) (6.297 - 6.775) (11.182 - 11.850) (16.449 - 17.263) (21.262 - 22.104)

DMC 0.031 0.053 0.183 0.619 1.430 3.044 5.208
(0.024 - 0.041) (0.040 - 0.070) (0.150 - 0.222) (0.542 - 0.706) (1.308 - 1.564) (2.869 - 3.230) (4.986 - 5.439)

Bogo 0.087 0.096 0.277 1.203 3.168 7.336 11.478
(0.066 - 0.114) (0.071 - 0.130) (0.231 - 0.332) (1.110 - 1.304) (2.999 - 3.346) (7.066 - 7.616) (11.148 - 11.818)

WAT1 0.036 0.075 0.389 1.839 4.548 8.358 13.112
(0.027 - 0.049) (0.058 - 0.096) (0.347 - 0.435) (1.723 - 1.963) (4.360 - 4.743) (8.073 - 8.651) (12.755 - 13.478)

OSBF-Lua 0.054 0.075 0.316 29.575 35.011 38.486 39.699
(0.034 - 0.085) (0.053 - 0.107) (0.155 - 0.644) (28.622 - 30.546) (34.371 - 35.657) (37.855 - 39.122) (39.046 - 40.356)

Table 2: Results for prior methods on trec07p data set with uniform synthetic noise. Results are reported
as (1-ROCA)%, with 0.95 confidence intervals. Bold numbers indicate best result for a given noise level, or
confidence interval overlapping with confidence interval of best result. Methods unable to complete a given task
are marked with dnf.

trec07p noise noise noise noise noise noise noise
0 0.01 0.05 0.10 0.15 0.20 0.25

MN NB 0.168 0.181 0.237 0.249 0.297 0.298 0.342

(0.151 - 0.185) (0.163 - 0.203) (0.216 - 0.259) (0.227 - 0.273) (0.273 - 0.324) (0.272 - 0.326) (0.309 - 0.377)

LogReg 0.005 0.006 0.071 0.550 2.266 5.192 9.501
(0.002 - 0.017) (0.004 - 0.009) (0.061 - 0.084) (0.512 - 0.590) (2.184 - 2.351) (5.045 - 5.343) (9.271 - 9.737)

ROSVM 0.010 0.031 0.473 2.246 5.604 9.531 14.714
(0.003 - 0.030) (0.020 - 0.048) (0.436 - 0.512) (2.157 - 2.339) (5.410 - 5.804) (9.260 - 9.809) (14.215 - 15.228)

DMC 0.006 0.021 0.103 0.242 0.594 1.208 2.484
(0.003 - 0.016) (0.014 - 0.031) (0.084 - 0.126) (0.209 - 0.280) (0.533 - 0.661) (1.123 - 1.300) (2.354 - 2.621)

Bogo 0.027 0.033 0.097 0.264 0.504 3.221 10.294
(0.017 - 0.043) (0.023 - 0.049) (0.077 - 0.122) (0.231 - 0.302) (0.454 - 0.559) (3.083 - 3.365) (10.041 - 10.551)

WAT1 0.006 0.019 0.428 1.984 5.221 9.226 14.116
(0.002 - 0.015) (0.014 - 0.026) (0.396 - 0.462) (1.904 - 2.068) (5.043 - 5.405) (9.000 - 9.457) (13.851 - 14.385)

OSBF-Lua 0.029 0.054 0.290 29.478 dnf dnf dnf
(0.015 - 0.059) (0.016 - 0.184) (0.097 - 0.859) (27.591 - 31.432)



• BogoFilter. BogoFilter has been the best per-
forming open-source spam filter at TREC for sev-
eral years (Cormack, 2006, 2007a), and employs a
fast variant of the Naive Bayes classifier.

• WAT1. This is the same filter submitted as wat1
at TREC 2007 (Cormack, 2007b), which gave best
results on several tasks. This filter employs lo-
gistic regression and binary 4-mers, but does not
normalize the feature vectors.

• OSBF-Lua. This is the same filter that gave
best overall performance at TREC 2006 (Cor-
mack, 2006). OSBF-lua uses an aggressive variant
of the Naive Bayes classifier, in which the filter
continues to re-train on the header a given email
message so long as the filter scores that message
near the classification boundary, or until other
stopping conditions such as maximum number of
iterations are met (Assis, 2006). We refer to this
update strategy as train until no error.

3.4 Initial Results

The results of this first experiment reveal a disturbing
trend, as shown in Tables 1 and 2. The methods giving
best results without label noise give worst results with
moderate to large amounts of label noise. This is true
for Logistic Regression, ROSVMs, DMC, BogoFilter,
and even Perceptron with Margins, each of which has
given strong performance in the TREC spam filter-
ing competitions. In contrast, the Multi-Nomial Naive
Bayes method gives relatively modest results without
noise, but is much more robust to increasing levels of
label noise.

What causes the steep degradation in performance
with the state of the art filters? Each of these methods
is tuned to perform aggressive online updates, nec-
essary to attain competitive results in the noise-free
TREC evaluations. For example, the Logistic Regres-
sion method is tuned with an aggressive learning rate
η and uses no regularization. The ROSVM method is
tuned with the cost parameter C set to a high value
discouraging regularization. Such settings allow the
filters to quickly adapt to new spam attacks when user
feedback contains no noise, but makes these filters sub-
ject to overfitting when label noise is present.

As an extreme case, OSBF-Lua, the top performer
from TREC 2006, was actually broken by the noisy
data, eventually giving results of nan on messages in
all noisy data sets with p > 0. The train-until-no-error
approach severely overfit mislabeled instances, result-
ing in a useless model.

These are a troubling initial results. Together, they
call into question the real-world utility of top filters
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Figure 1: Results for varying learning rate η for Lo-
gistic Regression, on spamassassin tuning data with
varying levels of synthetic uniform label noise.

from previous evaluations. Are the strong performance
levels from TREC only achievable in laboratory set-
tings, with users willing and able to give perfectly ac-
curate feedback? The remainder of this paper investi-
gates this question.

4 Filtering without Overfitting

In this section, we suggest several strategies for mak-
ing learning-based filtering methods more robust to
noise in feedback. These strategies include tuning pa-
rameters to prevent overly aggressive updates, various
forms of regularization for logistic regression and SVM
variants, and methods that attempt to automatically
clean or even correct labels given for training.

For preliminary experiments and tuning runs in this
section, we created noisy versions of the spamassassin
data set, adding uniform synthetic label noise at dif-
ferent levels as described in Section 3.2.

4.1 Tuning Learning Rates

As discussed above, both Logistic Regression and Per-
ceptron with Margins utilize a learning rate parameter
η that controls the size of the step taken on any given
update during online gradient descent. Lower values of
η lead to less aggressive updates, giving an online ap-
proximation of the early stopping strategy that gives
good results when gradient descent is applied in batch
mode (Mitchell, 1997).

Figure 1 shows the effect of varying η for Logistic Re-
gression at different levels of label noise on the noisy
spamassassin data sets. (Similar effects are seen with
Perceptron with Margins). Note that when there is lit-
tle or no label noise, high values of η give best results,
but when label noise becomes more prevalent lower η

values (centering on η = 0.02) improve results.

For our final experiments in the next section, we set
η = 0.02 for Logistic Regression and η = 0.02 with



margin= 2 for Perceptron with Margins, as these val-
ues give best results at noise level p = 0.25 and near-
best results for other noise values at or above p = 0.1
on the noisy spamassassin tuning data.

4.2 Regularization

Another general strategy for reducing overfitting is reg-
ularization, requiring that the learned model not only
describes the training data well, but also has low com-
plexity (see, for example, Scholkopf and Smola, 2001).
One measure of model complexity is the L2-norm (or
Euclidean norm) of the weight vector. Thus, L2 regu-
larization seeks to ensure that the Euclidean norm of
the weight vector is as small as possible, while still de-
scribing the training data well. These goals of fitting
the training data and reducing model complexity are
often in conflict, and the balance between these goals
is controlled by a parameter.

4.2.1 Regularization with SVM variants

The classic soft-margin SVM optimization problem is
to minimize:

||w||2 + C

m∑

i

ξi

Here, w is the weight vector storing the model, each ξi

is a slack term describing the amount of error associ-
ated with a particular training example xi (Scholkopf
& Smola, 2001). Thus, the optimization problem seeks
to minimize both model complexity (the L2-norm of
w) and training error (given by the sum of the slack
terms), and the cost parameter C controls how much
emphasis to place on each of these tasks in training.

A high value of C focuses on reducing training error by
enforcing little regularization, resulting in the possibil-
ity of overfitting. Both Sculley and Wachman (2007)
and Drucker et al. (1999) found that high values of
C gave best performance on spam data for ROSVMs
and SVMs, respectively, but these results were gained
with no label noise in the data. As shown in Figure
2, lower values of C give much improved performance
in the presence of noise. We set C = 0.5 for our final
experiments, as this gives best results for noise level
p = 0.25.

4.2.2 Regularization for Logistic Regression

Logistic Regression is often considered to be especially
prone to overfitting in the absence of regularization
(Mitchell, 2005). For the online gradient descent algo-
rithm commonly used for online logistic regularization,
L2 regularization is achieved with a modified update
rule (Mitchell, 2005):

w← w + η(yi − f(xi))xi − ηλw

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

Value of C

(1
−

R
O

C
A

)%

noise 0.25
noise 0.2
noise 0.15
noise 0.1
noise 0.05
noise 0.01
noise 0

Figure 2: Results for varying C in ROSVM for regu-
larization, on spamassassin tuning data with varying
levels of synthetically added label noise.

As before, w is the weight vector, xi is an individual
training example with label yi ∈ {0, 1}, and the learn-
ing rate is given by η. The prediction function f(xi)
returns a value between 0 and 1 indicating predicted
“spamminess” of xi. Regularization is controlled by
the parameter λ, where larger values of λ enforce more
regularization and reduce overfitting.

Note that this modified update rule increases compu-
tational cost. Where before each update could be per-
formed in time O(|xi|), where |xi| is the number of
nonzero elements of the sparse vector xi, now each up-
date requires O(|w|), the number of non-zero features
in w, which may be considerably larger.

After a grid search for parameter values of λ and η

using spamassassin tuning data, we were surprised
to find that L2 regularization with values of λ ranging
from λ = 10−7 to λ = 102 did not improve results at
any noise level. Values above λ = 10−4 monotonically
degraded results, and smaller values gave results effec-
tively equivalent to λ = 0. To investigate this further,
we chose a value of λ = 0.0001 (with η = 0.02) for our
final experiments on test data, as this was the largest
value that did not significantly decrease performance
on tuning data compared to λ = 0.

4.3 Label Cleaning

Another machine learning approach for coping with
noisy labels is automated label cleaning, in which ex-
amples that are suspected to be incorrectly labeled are
discarded from the data set (Brodley & Friedl, 1999).
To use this approach in the online filtering scenario,
we suggest an obvious online algorithm, given in Fig-
ure 3. This method uses confidence thresholds t+1 and
t
−1, to define criteria for cleaning.

In our experiments, we apply this algorithm using
Logistic Regression as the base learner, so that t+1

and t
−1 may be interpreted as probability thresh-



olds. After tuning on noisy spamassassin data, we
set t+1 = 0.7 and t

−1 = 0.3, as these values gave best
results for noise level p = 0.25 with η = 0.02.

for each new example xi:
use filter to make prediction, using f(xi)
get (possibly noisy) label yi from oracle
if (f(xi) < t+1 and yi == −1) or

(f(xi) > t
−1 and yi == +1)

then update model using (xi, yi)
else discard xi and skip model update

Figure 3: Pseudo-code for Online Label Cleaning.

4.4 Label Correcting

In the label correcting method, the filter proactively
changes the labels of examples for which the filter
strongly disagrees with the given label (Zeng & Mar-
tinez, 2001), at the risk of introducing additional noise
into the data (Rebbapragada & Brodley, 2007). We
propose a simple online method for label correcting,
given in Figure 4, similar to the online label clean-
ing method. After tuning, we set t+1 = 0.95 and
t
−1 = 0.05 with η = 0.02, using Logistic Regression

as the base learner.

for each new example xi:
use filter to make prediction, using f(xi)
get (possibly noisy) label yi from oracle
if (f(xi) > t+1) then set yi := +1
if (f(xi) < t

−1) then set yi := −1
update model using (xi, yi)

Figure 4: Pseudo-code for Online Label Correcting.

5 Experiments

In this section, we test the modified filters, with pa-
rameters tuned as described in Section 4, on both syn-
thetic label noise and on natural noise from real users.

5.1 Synthetic Label Noise

We first tested the modified methods on synthetic label
noise, using the same data and evaluation methods
described in Section 3. Results for these experiments
are shown in Tables 3 and 4.

First, we note that simply reducing the learning rate η

makes Logistic Regression and Perceptron with Mar-
gins much more resistant to label noise for both data
sets, at a slight cost in performance without label
noise. Perceptron with Margins, in particular, demon-
strates its effectiveness as a “noise-tolerant” algorithm
(Khardon & Wachman, 2007).

Second, additional regularization gives strong results
with ROSVM, but does not give added benefit for Lo-
gistic Regression with λ = 0.0001. To check if this
was because of a particular λ value, we ran additional
tests and found that higher values of λ monotonically
degraded classification performance at all noise levels,
while lower values of λ converged to the results where
λ = 0. Thus, it appears that L2 regularization for lo-
gistic regression is simply not helpful for email spam
filtering. We believe this is due to the fact that in
the online gradient descent with L2 penalty used for
Logistic Regression, rare-but-informative features are
penalized over time. In contrast, the SVM variant is
better suited to maintaining values for many relevant
features (Joachims, 1999).

Third, the approach of label cleaning gave excellent
results, clearly improving on base Logistic Regression
results on both data sets at moderate to high levels of
noise. Label correcting, on the other hand, did not give
added benefit. When we explored other parameter set-
tings, we found that more aggressive label correcting
only degraded results on these data sets.

5.2 Natural Label Noise

The previous experiments show that there are sev-
eral methods available for dealing with uniform la-
bel noise, an interesting result given the failure of the
best TREC filters on the same task. But is a uniform
model of label noise always realistic? It seems reason-
able that messages such as gray mail may have higher
rates of labeling inconsistency than average. Simi-
larly, if spammers are inside the labeling system, then
certain spam messages may have a disproportionately
high noise rate. In this section, we experiment with
our best available approximation of label noise caused
by actual users, using human labels collected by the
spamorham.org project (Graham-Cumming, 2006) for
the trec05p-1 data set.

To prepare test data with natural label noise, for each
message in the trec05p-1 data set we sampled one
human labeling from the set of all human labeling for
that message, uniformly at random. Thus, the final
data set contained the same messages as trec05p-1

in the same order, but with labels that reflected the
distribution of label noise produced by human users.
In comparison with the trec05p-1 gold standard la-
bels, this test set contained 6.75% incorrect labels.

For comparison, we then created a synthetic data set
from trec05p-1, with a uniform p = 0.0675 noise
rate identical to that of the natural label noise data
set. Finally, we also tested all methods on the original
trec05p-1 data with gold-standard labels.

The results, given in Table 5, show that natural label



Table 3: Results for modified methods on trec06p data set with uniform synthetic noise. Results are reported as
(1-ROCA)%, with 0.95 confidence intervals. Bold numbers indicate best result, or confidence interval overlapping
with confidence interval of best result.

trec06p noise noise noise noise noise noise noise
0 0.01 0.05 0.10 0.15 0.20 0.25

LogReg η = 0.02 0.070 0.060 0.047 0.064 0.074 0.142 0.401
(0.057 - 0.085) (0.049 - 0.073) (0.038 - 0.058) (0.051 - 0.080) (0.062 - 0.089) (0.120 - 0.169) (0.363 - 0.444)

LogReg L2-rglz. 0.068 0.059 0.046 0.064 0.074 0.141 0.398
η = 0.02, λ = 0.0001 (0.057 - 0.082) (0.049 - 0.071) (0.037 - 0.059) (0.049 - 0.082) (0.060 - 0.090) (0.118 - 0.168) (0.361 - 0.439)

LogReg Labl-Corr. 0.107 0.112 0.106 0.136 0.093 0.147 0.403
(0.087 - 0.132) (0.094 - 0.134) (0.086 - 0.132) (0.111 - 0.167) (0.077 - 0.113) (0.122 - 0.176) (0.366 - 0.443)

LogReg Labl-Clean 0.049 0.049 0.045 0.060 0.055 0.086 0.107

(0.037 - 0.065) (0.038 - 0.062) (0.035 - 0.058) (0.047 - 0.076) (0.043 - 0.069) (0.068 - 0.110) (0.090 - 0.128)

PwM η = 0.02, m = 2 0.036 0.035 0.043 0.049 0.053 0.066 0.082

(0.027 - 0.047) (0.026 - 0.048) (0.032 - 0.058) (0.035 - 0.068) (0.040 - 0.070) (0.048 - 0.089) (0.066 - 0.103)

ROSVM C = 0.5 0.033 0.032 0.036 0.040 0.046 0.062 0.095

(0.025 - 0.044) (0.023 - 0.044) (0.026 - 0.052) (0.029 - 0.054) (0.034 - 0.062) (0.047 - 0.081) (0.076 - 0.119)

Table 4: Results for modified methods on trec07p data set with uniform synthetic noise. Results are reported as
(1-ROCA)%, with 0.95 confidence intervals. Bold numbers indicate best result, or confidence interval overlapping
with confidence interval of best result.

trec07p noise noise noise noise noise noise noise
0 0.01 0.05 0.10 0.15 0.20 0.25

LogReg η = 0.02 0.009 0.007 0.007 0.014 0.036 0.091 0.363
(0.004 - 0.018) (0.004 - 0.011) (0.005 - 0.010) (0.008 - 0.023) (0.028 - 0.045) (0.078 - 0.107) (0.332 - 0.396)

LogReg L2-rglz. 0.009 0.007 0.007 0.014 0.035 0.091 0.359
η = 0.02, λ = 0.0001 (0.004 - 0.020) (0.004 - 0.011) (0.005 - 0.009) (0.008 - 0.025) (0.027 - 0.047) (0.077 - 0.107) (0.326 - 0.395)

LogReg Labl-Corr. 0.009 0.010 0.011 0.016 0.037 0.092 0.364
(0.005 - 0.018) (0.005 - 0.018) (0.006 - 0.020) (0.011 - 0.024) (0.029 - 0.047) (0.079 - 0.107) (0.338 - 0.393)

LogReg Labl-Clean 0.010 0.011 0.013 0.010 0.010 0.017 0.018

(0.005 - 0.018) (0.005 - 0.021) (0.008 - 0.023) (0.005 - 0.019) (0.006 - 0.018) (0.011 - 0.025) (0.013 - 0.025)

PwM η = 0.02, m = 2 0.008 0.011 0.021 0.021 0.043 0.056 0.087
(0.004 - 0.017) (0.006 - 0.020) (0.013 - 0.033) (0.013 - 0.035) (0.030 - 0.062) (0.040 - 0.079) (0.069 - 0.110)

ROSVM C = 0.5 0.006 0.007 0.010 0.008 0.027 0.033 0.048
(0.002 - 0.018) (0.003 - 0.014) (0.006 - 0.017) (0.005 - 0.013) (0.017 - 0.044) (0.020 - 0.054) (0.034 - 0.068)



Table 5: Results for natural and synthetic noise
at identical noise levels. Natural label noise for
trec05p-1 was uniformly sampled from human label-
ings collected by the spamorham.org project. Results
are reported as (1-ROCA)%, with 0.95 confidence in-
tervals.

trec05p-1 no synth. natural
filters noise noise noise

MN NB 0.871 1.270 1.425
(0.831-0.913) (1.210-1.333) (1.364-1.489)

LogReg 0.013 0.249 0.563
η = 0.1 (0.011-0.015) (0.232-0.267) (0.531-0.596)

PwM 0.022 0.324 1.056
η = 0.5, m = 8 (0.018-0.027) (0.297-0.352) (0.982-1.137)

ROSVM 0.012 2.063 2.172
C = 100 (0.010-0.016) (1.987-2.142) (2.088-2.259)

DMC 0.013 0.241 0.574
(0.009-0.017) (0.217-0.268) (0.535-0.616)

BogoF 0.042 7.215 0.551
(0.031-0.056) (7.021-7.413) (0.512-0.593)

WAT1 0.012 1.073 1.294
(0.010-0.015) (1.017-1.131) (1.233-1.358)

OSBF-Lua 0.011 37.025 32.770
(0.008-0.014) (34.895-39.207) (32.436-33.105)

LogReg 0.031 0.037 0.156
η = 0.02 (0.027-0.034) (0.324-0.043) (0.145-0.168)

LogReg 0.030 0.039 0.146
labl. corr. (0.028-0.036) (0.034-0.043) (0.135-0.159)

LogReg 0.022 0.025 0.463
labl. clean (0.018-0.027) (0.020-0.030) (0.423-0.506)

PwM 0.022 0.047 0.304
η = 0.02, m = 2 (0.018-0.027) (0.038-0.060) (0.0276-0.336)

ROSVM 0.019 0.030 0.294
C = 0.5 (0.015-0.023) (0.023-0.039) (0.264-0.327)

noise appears to be more challenging to filters than
uniform noise. The unmodified filters perform badly
on both the synthetic noise and natural noise. In con-
trast, the modified filters perform relatively well on
the synthetic noise, but give results roughly an or-
der of magnitude worse on the natural noise (although
still better than the unmodified filters). These results
agree with previous observations that uniform class la-
bel noise is easier to filter than label noise that skews
the label distribution in certain regions of the feature
space (Brodley & Friedl, 1999; Rebbapragada & Brod-
ley, 2007). Additional work is needed for this natural
label noise.

6 Discussion

At the outset of this investigation, our goal was to
find out how top-performing filters from TREC com-
petitions fared in the presence of label noise. To our

dismay, we found that even uniform label noise dra-
matically reduces the effectiveness of these state of
the art filters when run “out of the box.” We then
found inexpensive modifications enabling TREC filters
to become significantly more tolerant of label noise.
Uniform label noise, which models random user errors
in feedback, is well handled by several modified meth-
ods. Natural noise, reflecting inconsistent or malicious
judgments, remains more difficult.

We observe that these “noise tolerant” filters would
not necessarily have achieved best performance on the
tasks as given in TREC-style evaluations. The noise-
less evaluation setting rewards aggressive online up-
dates, and promotes filters that may be prone to over-
fitting in real-world applications. However, we feel
that a slight decrease in classification performance in
the noiseless setting is more than compensated for by
improved performance in the noisy setting.

It is critical that we are able to distinguish those filters
that are robust to label noise (or may be made robust
with appropriate parameter settings) from those that
fail in noisy settings. Thus, we would like to propose
that future spam filtering evaluations include filtering
tasks with various levels of label noise. Ideally, this
label noise would be natural noise from real human
users rather than synthetic, wherever possible, as this
is the more challenging case.
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