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Abstract.  Spam-reduction techniques have developed rapidly over the last few years, as spam volumes have 
increased.  We believe that no one anti-spam solution is the “right” answer, and that the best approach is a multi-
faceted one, combining various forms of filtering with infrastructure changes, financial changes, legal recourse, 
and more, to provide a stronger barrier to spam than can be achieved with one solution alone.  SpamGuru 
addresses the part of this multi-faceted approach that can be handled by technology on the recipient’s side, using 
plug-in tokenizers and parsers, plug-in classification modules, and machine-learning techniques to achieve high 
hit rates and low false-positive rates. 

1 Introduction 

Spam-reduction techniques have developed rapidly over the last few years, as spam volumes have increased.  We 
believe that the spam problem requires a multi-faceted solution that combines a broad array of filtering techniques 
with various infrastructural changes, changes in financial incentives for spammers, legal approaches, and more [1].  
This paper describes one part of a more comprehensive anti-spam research effort undertaken by us and our 
colleagues: SpamGuru, a collaborative anti-spam filter that combines several learning, tokenization, and user 
interface elements to provide enterprise-wide spam protection with high spam detection rates and low false-positive 
rates. 

Three basic design principles underlie SpamGuru.  First, it simplifies administration. The infrastructure and 
productivity costs of spam in today’s corporate environment are staggering.  These costs are compounded by the 
time and effort system administrators must devote to blocking spam and preventing false positives. SpamGuru 
automates many decisions and tasks (such as maintaining black- and white-lists), thereby reducing I/T costs.  
Second, SpamGuru is highly customizable and tunable by both system administrators and individual users.  No two 
organizations are alike; each has its own preferences regarding false-positive rate, user control, and other policy-
related settings.  Similarly, users differ in their definition of spam, and in their toleration of it. Giving users the 
ability to customize e-mail filtering can improve user satisfaction and eliminate support issues created by a one-size-
fits-all solution.  Third, by combining multiple classifiers and tokenization methods, SpamGuru provides a very low 
false positive rate that can be tuned to suit the administrator’s or user’s spam detection vs. false positive tradeoff. In 
addition to providing superior performance, the multiple classifier approach also makes SpamGuru robust against 
changes in spammer tactics.  

This paper highlights some of the techniques that we use to achieve these three design goals. The next section 
provides an overview of SpamGuru and how it integrates into an organization’s e-mail infrastructure.  The following 
section details each of SpamGuru’s filtering technologies and how they are combined to form a single aggregate 
filter.  Then, we describe experiments that evaluate SpamGuru’s filtering technologies individually and in 
combination with one another in order to assess the efficacy of the multiple classifier approach.  The paper finishes 
with a discussion of related work and a summary of our main results. 

2 System Overview 

Fig. 1 provides an overview of our anti-spam architecture.  Mail enters the enterprise via an SMTP server.  Mail is 
relayed from the SMTP server to the SpamGuru anti-spam server.  SpamGuru analyzes each incoming message and 
then assigns a score from 0 to 1000 for each user that is to receive that message, with higher scores indicating a 
higher likelihood that the message is spam. The message is then routed to the appropriate destination based on 
system and user preferences.  If the message is identified as legitimate e-mail, it is delivered to the user’s mailbox 



untouched.  If the message is deemed spam, the system does one of four actions based on system- and user-defined 
preferences: the message may be deleted, filed in an archive of recently blocked e-mail, sent to a challenge queue 
that provides a challenge/response verification of sender identity, or labeled as probable spam and delivered to the 
client for the client to take its own action as appropriate. Each approach has its good and bad aspects. For example, 
deletion saves valuable disk space and other resources, but makes it impossible to retrieve mail in the event of false 
positives. The recipient’s mail client may do further spam analysis, but such client-side analysis would happen 
outside of SpamGuru, which is purely server-based. 

An important component of our overall architecture is user reporting of junk and good e-mail, a process we call 
“voting”. Voting is at present the main source of input to our learning algorithms.  To make user voting as easy as 
possible, we have extended the Lotus Notes mail client to include buttons for instant reporting of spam and non-
spam messages.  In addition, we have added to the client the two folders “Junk Mail” and “Borderline Messages”.  
The “Junk Mail” folder is common to many anti-spam solutions and is manly a mechanism for reducing the impact 
of false positives. Mail that is labeled as probably spam can be placed in a user’s Junk Mail folder, giving the user a 
second chance to peruse the junk mail folder to identify any messages that were incorrectly branded as spam. 

The problem with Junk Mail folders is, naturally, that they contain a lot of junk.  Users have little incentive to 
frequently scan a junk mail folder containing hundreds of messages, especially when using an anti-spam solution 
with a low false positive rate.  SpamGuru’s “Borderline Messages” folder helps alleviate this problem.  The 
Borderline Messages folder is designed to contain a small set of messages for which the anti-spam server is 
relatively uncertain in its classification, receiving both borderline spam and borderline good mail.  The inclusion of 
borderline good messages encourages users to view their borderline folder and to vote mail as either good or spam 
by threatening to delete mail from the folder after a specified time period.  However, removing borderline good e-
mail could cause the same problem we are trying to prevent: the user losing important e-mail due to false positives.  
SpamGuru places borderline good messages in both the user’s inbox and the user’s borderline messages folder.  
Thus users may periodically check for misclassified mail without reducing the system’s perceived effectiveness. 

 

 
Fig. 1: The SpamGuru anti-spam architecture. 

 

Fig. 2: The SpamGuru Server filtering pipeline 

 
While many anti-spam solutions only consider incoming mail, the analysis of outgoing mail is also valuable.  
Outgoing mail is a good resource for learning both personal and global white-lists.  Also, senders of legitimate bulk 
e-mail must comply with a variety of local, national, and international laws while honoring the privacy and the 
preferences of their customers.  SpamGuru is integrated with IBM’s Global Email Cleansing Service (GECS) to help 
prevent legitimate bulk e-mailers from becoming part of the problem [2]. 

One of the challenges faced by anti-spam filters is that no two users define spam in the same way.  While one 
person may consider the constant barrage of mortgage offers problematic, another user may see an opportunity to 
save on a new home.  Most enterprise spam filters use a single, necessarily cautious definition of spam for filtering 
mail for all users.  An alternative frequently advocated in the literature is personalized classifiers tuned to individual 
preferences [3][4]. Personalized classifiers learn by asking users to label wanted and unwanted mail by reporting any 
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mistakes it finds using a “Report Spam” or “Report Good” button.  Personal classifiers place the burden of providing 
training data on the user and cannot take advantage of the collaborative efforts of others within their organization.  
SpamGuru addresses this issue by creating both a global classifier and a personalized classifier for each user. The 
results of each classifier are dynamically combined to benefit from global learning while respecting individual 
preferences. While arguments can be made for situating personal classifiers on the client, we have implemented 
SpamGuru as a pure server-based solution in which personalized models are stored and used on the server. This 
choice makes SpamGuru easier to deploy and maintain in a large enterprise environment. 

3 Filtering Pipeline 

SpamGuru’s anti-spam filter design supports the three principles set forth in the introduction. It enables easy 
administration and configurability of large-scale enterprise anti-spam systems, and it yields a high performance, 
robust filter that achieves a high level of throughput on modest hardware. The filter architecture, a realization of 
which is illustrated in Fig. 2, is a pipeline of anti-spam filter components (classifiers, rendering algorithms, 
tokenizers and other spam-identification tools) through which the e-mail messages are routed. Each filter component 
uses common generic interfaces that enable one to combine the components in essentially any order, resulting in an 
aggregate filter that is more effective than any individual classifier. The combination of several different filters in 
the pipeline also leads to greater robustness, because any new spamming technique is unlikely to evade all of the 
filters simultaneously. The flexibility offered by the common interfaces is important because the spam problem is 
constantly evolving, and because each enterprise has its individual characteristics that may favor one configuration 
over another. Thus administrators need the ability to experiment with and change configurations. In future releases, 
we intend to make the classification interface public so that we can support third-party and user-provided classifiers.  

The pipeline processes an incoming e-mail message by passing it along from one filter component to the next.  
Each classifier analyzes the message and assigns it a score based on the classifier’s prediction of how likely it is to 
be spam.  For each classifier, we define two thresholds. The threshold TDefiniteSpam indicates the score above which the 
classifier is so certain that the message is spam that the message can be routed directly to the spam router with no 
need for further downstream processing. Similarly, the threshold TDefiniteGood indicates the score below which the 
classifier is so certain that the message is not spam that the message can be routed directly to the mail server. 
Messages between these two thresholds are annotated with the classifier’s score and other information that can be 
used as features by downstream classifiers) and passed to the next classifier. If a message reaches the end of the 
pipeline without being declared definite spam or definite good mail, the scores of all the classifiers are combined to 
produce a single aggregate score that is thresholded to determine the message’s classification, (and hence 
destination). 

This short-circuit mechanism reduces the average number of classifiers needed to process each message, helping 
to make SpamGuru’s pipeline computationally efficient. The exact placement of the various classifiers can have an 
important bearing on efficiency; Fig. 2 represents an arrangement that we have found to work well in practice. The 
basic principle is to place early in the pipeline the filters that are least expensive and/or maximally discriminant (i.e. 
ones that can with confidence brand a message as definitely spam or definitely good). Thus simple approaches that 
only analyze headers are placed earlier than more computationally expensive algorithms that filter on message 
content, and message-content filters with very low false-positive rates are placed earlier than the others. 

The computational cost of receiving, parsing, rendering, and tokenizing e-mail often dominates that of running 
the individual classifiers. SpamGuru reduces computational costs by performing rendering once, and by sharing 
tokenization across different classifiers wherever possible. Consequently, SpamGuru’s computational cost is only 
slightly more than that of running a single classifier, and as we will show the benefits in terms of improved 
classification accuracy are considerable. Further computational savings will be realized in future versions of 
SpamGuru by exploiting similar data structures and analysis code that exist in several classifiers, such as JClassifier, 
SwiftFile, and Linear Discriminant. 

In the current instantiation of the pipeline, displayed in Fig. 2, the first component is the challenge and payment 
verification engine.  This engine classifies incoming e-mail as good if it contains a valid challenge response or 
payment stamp.  This component is still under development, but we are in the process of implementing the Charity 
Seals method of charging to send e-mail to recipients for which the sender has not established a prior 
relationship [5].   The Charity Seals method is unique in that it eliminates the negative aspect of paying to send e-
mail by replacing cash payments with charitable donations that can have a positive effect on society. 



The next component analyzes DNS and domain records to determine whether the message is likely to have been 
spoofed or sent from a less reliable SMTP server.  SpamGuru’s DNS analysis provides most of the advantages of the 
MARID MTA authentication record [6] without the need for explicit publication of outgoing mail servers.  It also 
can identify new domains and SMTP sessions originating from cable modems and DSL lines.  While this 
information may be insufficient to make a definitive classification, it serves as valuable input to subsequent 
classifiers.  

After establishing the source of a message, we apply an advanced white-listing and black-listing algorithm that 
determines which items to filter based on user voting.  White- and black-lists are maintained both for individuals and 
for the entire organization.  If a user votes a sender as a spammer, the user will not receive messages from that 
sender again.  Other recipients will continue to receive e-mail from this suspected spammer until enough users vote 
the sender as a spammer to justify global black-listing.  By default, SpamGuru is configured to rarely take the 
recommendations of its white-list and black-list system on face value.  Instead, they are used as heavily weighted 
features by the downstream classifiers.  This helps avoid filtering the occasional good message from otherwise 
spammy senders and vice versa. 

At this point, the message content is ready to be analyzed by various message-content filters. First, however, it is 
parsed by the Intelligent Renderer, which is designed to counter a trick frequently used by spammers to elude anti-
spam filters: inserting phony text that is either invisible or likely to be ignored by human readers. To counter these 
tricks, SpamGuru renders each message to determine what the human user is really likely to see. Rendering is not 
always the best policy, because it removes from the message the tell-tale features that often indicates spammers’ 
attempts to obfuscate the message, which are very accurate predictors of spam. Therefore, the Intelligent Renderer 
sends both a rendered and a raw version of the message on through the series of message-content filters.  

Each message-content filter has its own tokenization and feature extraction algorithms, which can be critical to 
the overall success of the filter. In the present setup, the first message-content filter is based on the Winnowing 
algorithm for plagiarism detection [7].  This algorithm extracts common k-grams appearing in spam and uses these 
as signatures for identifying nearly identical e-mail.  Incoming e-mail that is deemed nearly identical to previously 
voted spam is also classified as spam.  All other e-mail is classified as good.  The plagiarism classifier achieves 
good results with low false-positive rates because of its reliance on near matching.  It also can often detect new types 
of spam before JClassifier or SwiftFile receive enough training examples to learn the new pattern. 

JClassifier is a naïve-bayesian text classifier loosely based on Paul Graham’s original design [3][4].   
JClassifier’s additions include a more robust evaluation function, ageing of terms to reduce index size, and a disk-
based implementation that is designed to scale to very large mail streams.  After JClassifier, SpamGuru applies a 
regularized linear classifier that has proven to be a top performer in many domains [8].  However, out of the box, 
this classifier suffers from a high false positive rate.  This may improve as we learn to tune the algorithm’s runtime 
parameters.  The algorithm is still valuable because its high spam detection rate combines well with other classifiers, 
as will be shown. Next, we apply a second naive-bayes algorithm that uses the naïve-bayes version of SwiftFile [9].  
The SwiftFile classifier has several subtle differences from the Paul Graham formulation, a good summary of which 
can be found in Sahami, et al. [10].  

The final algorithm, and potentially the most interesting, is Chung-Kwei [11].  Chung-Kwei is based on the 
Teiresias pattern discovery algorithm [12], which has been used successfully to tackle a wide variety of 
computational biology problems including gene finding and protein annotation [13].  Chung-Kwei uses Teiresias to 
identify character sequences that appear frequently in spam, but never in non-spam.  The original implementation 
took four days on a 48-node supercomputer to analyze and classify the 173,000 messages used in the experiments 
below.  We have since adapted the original implementation and hand-tuned the algorithms for efficient spam 
detection.  The new implementation processes the same 173,000 messages in 2 hours on a 2.2Ghz Pentium 4 
computer.  We anticipate further improvements in Chung-Kwei’s efficiency and expect it will be practical for real-
world deployment in the near future. 

4 Evaluation 

Ideally, spam filters should be evaluated on large, publicly available databases of known spam and known good 
mail. Mainly due to privacy concerns, good public databases of both good mail and spam mail do not exist. Instead, 
many researchers rely on user studies.  Unfortunately, there is a strong tendency for users to agree with a classifier’s 
decisions, especially on borderline messages to which the user is indifferent. Furthermore, false positive rates are 
often grossly underestimated because users never see good mail that is either deleted or placed automatically in a 



rarely-inspected Junk Mail folder.  Thus user studies often overestimate a system’s spam detection rate and 
underestimate its false positive rate. 

We have taken what we believe to be a more accurate and consistent approach to spam filter evaluation. We 
collected all the messages passing through our SpamGuru pilot server for several days, along with all the user votes 
and the classifications generated during the same period.  Messages not receiving votes were assigned an initial label 
based on the classifier score received during live operation.  This labeling provides a good first approximation, 
because errors in the initial labeling would be corrected by users by voting. Then, we cleaned the dataset using a 
combination of automated tools and hand analysis to correct all mistakes we could find in the initial labeling. We 
used a strict criterion: messages were labeled as spam only if they were unsolicited commercial e-mail. Thus opt-in-
spam, in which the user registered at a web site that states that the registration will be used by the web site’s partners 
to send commercial advertisements, is not counted as spam even though many people might still find it 
objectionable or worthless. The resulting corpus consisted of 173,000 consistently-labeled messages from 200 e-
mail users within IBM, roughly 130,000 of which were labeled as spam. 

We randomly split the data into equal sized training and test sets, to which each algorithm was applied. Note 
that, as a consequence of our strict definition of spam, one would expect our measured false positive rates to be a 
good deal higher than what is typically reported in the literature or in commercial anti-spam product literature. Thus, 
while our results are internally inconsistent, they are unfortunately difficult to compare with results reported 
elsewhere. 

4.1 Individual Classifiers 

Fig. 3 shows the results of evaluating each of our classifiers on the test corpus.  Each classifier produces an output 
score, and classifies a message as spam if its score exceeds a given threshold. The threshold can be treated as an 
adjustable parameter that governs the tradeoff between the spam detection and false positive rates. For each 
algorithm, we swept through a broad range of thresholds, measuring the detection and false positive rates at each 
value. This generated the curves of Fig. 3. 
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Fig. 3: Individual classifier performance. 
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Fig. 4: Combined classifier performance. 

 
Several conclusions can be drawn. First, note that the ideal classifier would have a detection rate of 100% and a 

false positive rate of 0%, and would hence be represented as a point at the top left corner of Fig. 3. Thus the quality 
of a classifier can be judged according to how close its curve is to the top left. Chung-Kwei is easily seen to be the 
strongest classifier throughout the range, especially at low false positive rates. At a false positive rate f of 0.1%, its 
detection rate d is 95.5%, which exceeds the value of d=91.3% attained by its nearest competitor, JClassifier. 
Chung-Kwei’s superiority is even more evident at lower false positive rates. Chung-Kwei attains d=87.3% at 
f=0.01%, while JClassifier cannot even register a false positive rate this low. At f=0.1%, the other classifiers have 
detection rates measuring approximately d=60% at best. Overall, the classifiers have fairly distinct detection vs. 
false positive curves, with Linear Discriminant doing very well at high false positive rates, and Plagiarism shining at 



lower false positive rates. The Linear algorithm fares poorly because its training assumes an equal weighting 
between false positives and false negatives, so it is likely that cost-sensitive training would improve its performance 
for small values of f.   

As has been noted, our strict definition of spam makes it difficult to compare our results directly with those 
reported elsewhere. As a result, the perceived false positive rate of this algorithm is substantially less than what the 
absolute performance results suggest. However, JClassifier provides a reasonable calibration point, as it is 
essentially an enhanced naïve-bayesian classifier that is similar to many spam filters in use today. This suggests that 
Chung-Kwei is a truly superior spam classifier, although some actual head-to-head comparisons would be required 
to establish this for certain. A close analysis of the false positives produced by the classifiers at f=0.1% and below 
revealed that most fell under the category of opt-in-spam, which would have been regarded as spam by most 
classifiers. Thus the false positives in question are almost universally harmless.   

4.2 Combined Classifiers 

One of the claimed advantages of our filter pipeline is that we can flexibly combine outputs from multiple classifiers 
to obtain a combined classifier of superior effectiveness and robustness. To validate this claim, we experimented 
with many different approaches to combining classifiers. By experimentation, we found that the most successful 
way to combine classifiers was to use their unthresholded output scores as input to a linear super-classifier. In other 
words, the super-classifier’s score was a weighted sum of the scores of the constituent classifiers, which was then 
thresholded. The optimal values of the weights and the threshold were established by minimizing a penalty function 
in which each false negative received a penalty of 1 and each false positive received an adjustable penalty. We 
generated the curves of Fig. 4 by sweeping through different values of the false positive penalty, using a standard 
optimization routine to find the best weights and thresholds at each value. 

First, we tried all six possible pairings of the four classifiers other than Chung-Kwei, and then we combined all 5 
classifiers. The results for two of the six pairs and for the five-way combination are shown in Fig. 4. We find that 
combining just two classifiers can be very beneficial. Out of the six pairs, the best is JClassifier plus Linear 
Discriminant. Remarkably, even though both algorithms have the worst possible detection rate of d=0% at f=0.01%, 
their combination achieves an excellent d=88.6% at f=0.01%, which is slightly better than Chung-Kwei. At f=0.1%, 
this combination achieves d=95.1%, which is essentially equivalent to Chung-Kwei. The super-classifier places the 
greatest weight on Linear above f=0.05%, shifting gradually to greater weight on JClassifier at lower values of f, 
although Linear maintains a sizeable weight down to the lowest measurable values of f. The other pair shown, 
SwiftFile plus Linear Discriminant, is also vastly superior to its constituent classifiers at low false positive rates, and 
the relative weighting of the two constituent classifiers follows the same pattern. Even Chung-Kwei can benefit from 
combination with other classifiers. The 5-way super-classifier is noticeably superior to Chung-Kwei, attaining 
d=95.8% at f=0.01% and d=98.1% at f=0.1%. Interestingly, the weight placed on Chung-Kwei in the 5-way super-
classifier is in the same general range as that of the other classifiers. 

5 Conclusions 

We have presented SpamGuru, an anti-spam filtering system for enterprises that is based on three important design 
principles. First, SpamGuru relieves the burden of anti-spam administration by automating several tasks such as 
maintaining white- and black-lists, updating filters automatically in response to user votes, etc. Second, the 
SpamGuru architecture supports easy, flexible configuration. This is important, because one size does not fit all, and 
because rapid changes in spammer techniques can necessitate changes in configurations or tuning parameters. 
SpamGuru gives individual users control of their level of filtering (thus accommodating a diverse user base while 
minimizing complaints), and provides personalized filtering that is usefully combined with global filters based on 
collaborative voting among users. The filter archive handles users concerns of false positives without the need to 
call support.   Finally, by combining multiple disparate classifiers, we have shown that SpamGuru can achieve 
excellent discrimination between spam and legitimate mail, and can offer a tunable tradeoff between spam detection 
rates and false positives, with excellent spam detection even at very low false positive rates. 
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