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Abstract. Spam-reduction techniques have developed rapiddy the last few years, as spam volumes have
increased. We believe that no one anti-spam solusi the “right” answer, and that the best appgnda@ multi-
faceted one, combining various forms of filteringhninfrastructure changes, financial changes, llegeourse,
and more, to provide a stronger barrier to spam tten be achieved with one solution alone. SpamGur
addresses the part of this multi-faceted approlaahdan be handled by technology on the recipiesidfe, using
plug-in tokenizers and parsers, plug-in classificainodules, and machine-learning techniques téeaehhigh

hit rates and low false-positive rates.

1 Introduction

Spam-reduction techniques have developed rapidly the last few years, as spam volumes have ireleag/e
believe that the spam problem requires a multititesolution that combines a broad array of fittgriechniques
with various infrastructural changes, changesnarfcial incentives for spammers, legal approached,more [1].
This paper describes one part of a more comprereraiti-spam research effort undertaken by us amd o
colleagues: SpamGuru, a collaborative anti-spaterfithat combines several learning, tokenizatiom] aser
interface elements to provide enterprise-wide spastection with high spam detection rates and lalse-positive
rates.

Three basic design principles underlie SpamGurirst,Ft simplifies administration. The infrastrucé and
productivity costs of spam in today’s corporateismvment are staggering. These costs are compdugéhe
time and effort system administrators must devotdlbcking spam and preventing false positives.n8paru
automates many decisions and tasks (such as mnmiigablack- and white-lists), thereby reducing kKdsts.
Second, SpamGuru is highly customizable and tunapleoth system administrators and individual useds two
organizations are alike; each has its own prefe®megarding false-positive rate, user control, atter policy-
related settings. Similarly, users differ in thdifinition of spam, and in their toleration of @iving users the
ability to customize e-mail filtering can improvear satisfaction and eliminate support issues etiday a one-size-
fits-all solution. Third, by combining multipleadsifiers and tokenization methods, SpamGuru pesvidvery low
false positive rate that can be tuned to suit thrainistrator’'s or user’s spam detection vs. falgsitve tradeoff. In
addition to providing superior performance, the tiplé classifier approach also makes SpamGuru tohgainst
changes in spammer tactics.

This paper highlights some of the techniques thatuse to achieve these three design goals. Thesaetion
provides an overview of SpamGuru and how it intezg@nto an organization’s e-mail infrastructufiéhe following
section details each of SpamGuru’s filtering tedbgies and how they are combined to form a singigregate
filter. Then, we describe experiments that evalu8pamGuru’s filtering technologies individually darn
combination with one another in order to asses®tfieacy of the multiple classifier approach. Tpegper finishes
with a discussion of related work and a summarnywfmain results.

2 System Overview

Fig. 1 provides an overview of our anti-spam amsttiire. Mail enters the enterprise via an SMTReserMail is

relayed from the SMTP server to the SpamGuru gr@tivsserver. SpamGuru analyzes each incoming nessal
then assigns a score from 0 to 1000 for each bserig to receive that message, with higher scmdisating a
higher likelihood that the message is spam. Thesawgs is then routed to the appropriate destindtased on
system and user preferences. If the messageritfidé as legitimate e-mail, it is delivered taethser’'s mailbox



untouched. If the message is deemed spam, thensykies one of four actions based on system- arddegined
preferences: the message may be deleted, filed archive of recently blocked e-mail, sent to allehge queue
that provides a challenge/response verificatiosesfder identity, or labeled as probable spam alideded to the
client for the client to take its own action as aggpiate. Each approach has its good and bad aspemntexample,
deletion saves valuable disk space and other ressubut makes it impossible to retrieve mail ia glvent of false
positives. The recipient’s mail client may do fethspam analysis, but such client-side analysisldvbappen
outside of SpamGuru, which is purely server-based.

An important component of our overall architectigr@iser reporting of junk and good e-mail, a precge call
“voting”. Voting is at present the main source put to our learning algorithms. To make userngts easy as
possible, we have extended the Lotus Notes maihtko include buttons for instant reporting of mpand non-
spam messages. In addition, we have added tdidm the two folders “Junk Mail” and “Borderline édsages”.
The “Junk Mail” folder is common to many anti-spaoiutions and is manly a mechanism for reducingriyact
of false positives. Mail that is labeled as prolgagam can be placed in a user’s Junk Mail folgeing the user a
second chance to peruse the junk mail folder totiffeany messages that were incorrectly brandespam.

The problem with Junk Mail folders is, naturallipat they contain a lot of junk. Users have littdeentive to
frequently scan a junk mail folder containing hudl of messages, especially when using an anti-spéution
with a low false positive rate. SpamGuru’'s “Bolder Messages” folder helps alleviate this problefiihe
Borderline Messages folder is designed to contasmall set of messages for which the anti-spameseis/
relatively uncertain in its classification, receigiboth borderline spam and borderline good make inclusion of
borderline good messages encourages users to lé@mwbbrderline folder and to vote mail as eitheod or spam
by threatening to delete mail from the folder afiespecified time period. However, removing bolidergood e-
mail could cause the same problem we are tryiqéoent: the user losing important e-mail due teefgositives.
SpamGuru places borderline good messages in betlugér's inbox and the user’s borderline messagjegert
Thus users may periodically check for misclassifigall without reducing the system'’s perceived daff@ness.
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Fig. 1: The SpamGuru anti-spam architecture. Fig. 2: The SpamGuru Server filtering pipeline

While many anti-spam solutions only consider inaognimail, the analysis of outgoing mail is also ediie.
Outgoing malil is a good resource for learning m#hsonal and global white-lists. Also, senderkegitimate bulk
e-mail must comply with a variety of local, natibnand international laws while honoring the priyaand the
preferences of their customers. SpamGuru is iatedrwith IBM’s Global Email Cleansing Service (GEQo help
prevent legitimate bulk e-mailers from becomingt wdithe problem [2].

One of the challenges faced by anti-spam filterthas no two users define spam in the same wayileVdhe
person may consider the constant barrage of martgéfigrs problematic, another user may see an tymty to
save on a new home. Most enterprise spam filteesausingle, necessarily cautious definition ohspar filtering
mail for all users. An alternative frequently adated in the literature is personalized classifiered to individual
preferences [3][4]. Personalized classifiers ldarasking users to label wanted and unwanted rgai¢porting any



mistakes it finds using a “Report Spam” or “Repg®dod” button. Personal classifiers place the buaferoviding

training data on the user and cannot take advarthgee collaborative efforts of others within therganization.
SpamGuru addresses this issue by creating bothbalgtlassifier and a personalized classifier facheuser. The
results of each classifier are dynamically combitedenefit from global learning while respectingividual

preferences. While arguments can be made for sigugersonal classifiers on the client, we havelémgnted
SpamGuru as a pure server-based solution in whéckopalized models are stored and used on thersditvis

choice makes SpamGuru easier to deploy and maiintaitarge enterprise environment.

3 Filtering Pipdline

SpamGuru’s anti-spam filter design supports theedhprinciples set forth in the introduction. It bles easy
administration and configurability of large-scaleterprise anti-spam systems, and it yields a higliopmance,
robust filter that achieves a high level of thropghon modest hardware. The filter architectureealization of
which is illustrated in Fig. 2, is a pipeline oftagpam filter components (classifiers, renderirigodthms,
tokenizers and other spam-identification toolsptiyh which the e-mail messages are routed. Eaeh ébmponent
uses common generic interfaces that enable onemdioe the components in essentially any ordeultiag in an
aggregate filter that is more effective than argividual classifier. The combination of severalfeiiént filters in
the pipeline also leads to greater robustness,usecany new spamming technique is unlikely to ealdef the
filters simultaneously. The flexibility offered khe common interfaces is important because the gpablem is
constantly evolving, and because each enterprisathiandividual characteristics that may favor moafiguration
over another. Thus administrators need the atidityxperiment with and change configurations. liure releases,
we intend to make the classification interface pubkb that we can support third-party and user-diexy classifiers.

The pipeline processes an incoming e-mail messggebsing it along from one filter component to tiext.
Each classifier analyzes the message and assigrscdre based on the classifier's prediction af hikely it is to
be spam. For each classifier, we define two thoielsh The threshol@peiniesam indicates the score above which the
classifier is so certain that the message is spamthe message can be routed directly to the spatar with no
need for further downstream processing. Similattg thresholdTpeinitecood iNdicates the score below which the
classifier is so certain that the messagaadsspam that the message can be routed directlyetarthil server.
Messages between these two thresholds are annetdtethe classifier’'s score and other informattbat can be
used as features by downstream classifiers) ansegas the next classifier. If a message reache®iid of the
pipeline without being declared definite spam dirdie good mail, the scores of all the classifiare combined to
produce a single aggregate score that is threstholdedetermine the message’s classification, (aadcé
destination).

This short-circuit mechanism reduces the averagebeu of classifiers needed to process each medselgéng
to make SpamGuru’s pipeline computationally effitielThe exact placement of the various classifiars have an
important bearing on efficiency; Fig. 2 represansarrangement that we have found to work wellracfice. The
basic principle is to place early in the pipelihe filters that are least expensive and/or maxirdiicriminant (i.e.
ones that can with confidence brand a messagefinst@lg spam or definitely good). Thus simple apaches that
only analyze headers are placed earlier than monepatationally expensive algorithms that filter onessage
content, and message-content filters with very flalge-positive rates are placed earlier than therst

The computational cost of receiving, parsing, reimdg and tokenizing e-mail often dominates thatwfning
the individual classifiers. SpamGuru reduces coapurtal costs by performing rendering once, andsharing
tokenization across different classifiers wherepessible. Consequently, SpamGuru’s computationsd isoonly
slightly more than that of running a single classifand as we will show the benefits in terms mfioved
classification accuracy are considerable. Furthmmputational savings will be realized in future siens of
SpamGuru by exploiting similar data structures andlysis code that exist in several classifiershsas JClassifier,
SwiftFile, and Linear Discriminant.

In the current instantiation of the pipeline, desd in Fig. 2, the first component is the chalkeagd payment
verification engine. This engine classifies incogiie-mail as good if it contains a valid challengsponse or
payment stamp. This component is still under dgvment, but we are in the process of implementiegGharity
Seals method of charging to send e-mail to recipidior which the sender has not established a prior
relationship [5]. The Charity Seals method isquei in that it eliminates the negative aspect gfmgato send e-
mail by replacing cash payments with charitableadioms that can have a positive effect on society.



The next component analyzes DNS and domain re¢ordstermine whether the message is likely to Hmen
spoofed or sent from a less reliable SMTP ser&ramGuru’s DNS analysis provides most of the adym# of the
MARID MTA authentication record [6] without the rbdor explicit publication of outgoing mail serverst also
can identify new domains and SMTP sessions origigairom cable modems and DSL lines. While this
information may be insufficient to make a defindticlassification, it serves as valuable input tbseguent
classifiers.

After establishing the source of a message, weyampladvanced white-listing and black-listing altfon that
determines which items to filter based on usemgptiWhite- and black-lists are maintained bothirfiaiividuals and
for the entire organization. If a user votes adseras a spammer, the user will not receive messigm that
sender again. Other recipients will continue weree e-mail from this suspected spammer until ghausers vote
the sender as a spammer to justify global blatkitis By default, SpamGuru is configured to rartdke the
recommendations of its white-list and black-lissteym on face value. Instead, they are used ashheaighted
features by the downstream classifiers. This halpsd filtering the occasional good message fraheimwise
spammy senders and vice versa.

At this point, the message content is ready tortadyaed by various message-content filters. Histyever, it is
parsed by the Intelligent Renderer, which is desigio counter a trick frequently used by spammeude anti-
spam filters: inserting phony text that is eithevigible or likely to be ignored by human readdis.counter these
tricks, SpamGuru renders each message to detemiaethe human user is really likely to see. Reindeis not
always the best policy, because it removes fromntessage the tell-tale features that often indscapmmmers’
attempts to obfuscate the message, which are wexyrae predictors of spam. Therefore, the IntefitgRenderer
sends both a rendered and a raw version of theagess through the series of message-contensfilter

Each message-content filter has its own tokenimadiod feature extraction algorithms, which can fitical to
the overall success of the filter. In the presatus, the first message-content filter is basedhenWinnowing
algorithm for plagiarism detection [7]. This algbm extracts common k-grams appearing in spamused these
as signatures for identifying nearly identical edmancoming e-mail that is deemed nearly identimapreviously
voted spam is also classified as spam. All otherad is classified as good. The plagiarism cléssiachieves
good results with low false-positive rates becafsés reliance on near matching. It also canroftetect new types
of spam before JClassifier or SwiftFile receive @glotraining examples to learn the new pattern.

JClassifier is a naive-bayesian text classifiersédp based on Paul Graham’s original design [3][4].
JClassifier's additions include a more robust eatdun function, ageing of terms to reduce indexe sand a disk-
based implementation that is designed to scalestg arge mail streams. After JClassifier, SpamGapplies a
regularized linear classifier that has proven tcaltep performer in many domains [8]. However, oluthe box,
this classifier suffers from a high false positia¢ée. This may improve as we learn to tune theralym’s runtime
parameters. The algorithm is still valuable beedtsshigh spam detection rate combines well witfeoclassifiers,
as will be shown. Next, we apply a second naivesbafgorithm that uses the naive-bayes versiomiftFle [9].
The SwiftFile classifier has several subtle differes from the Paul Graham formulation, a good summmiawhich
can be found in Sahami, et al. [10].

The final algorithm, and potentially the most imsting, is Chung-Kwei [11]. Chung-Kwei is based tbe
Teiresias pattern discovery algorithm [12], whichshbeen used successfully to tackle a wide varidty
computational biology problems including gene firgland protein annotation [13]. Chung-Kwei usesebias to
identify character sequences that appear frequamthpam, but never in non-spam. The original anptntation
took four days on a 48-node supercomputer to aadyw classify the 173,000 messages used in theriments
below. We have since adapted the original impldatean and hand-tuned the algorithms for efficispm
detection. The new implementation processes thee sh73,000 messages in 2 hours on a 2.2Ghz Pedtium
computer. We anticipate further improvements inntftKwei's efficiency and expect it will be praaidor real-
world deployment in the near future.

4 Evaluation

Ideally, spam filters should be evaluated on lamlicly available databases of known spam andvingood
mail. Mainly due to privacy concerns, good publatabases of both good mail and spam mail do net.dristead,
many researchers rely on user studies. Unfortlypdlere is a strong tendency for users to agriéie avclassifier's
decisions, especially on borderline messages tahmiie user is indifferent. Furthermore, false pasirates are
often grossly underestimated because users negegasml mail that is either deleted or placed autimaldy in a



rarely-inspected Junk Mail folder. Thus user stgdobften overestimate a system’s spam detectian aat
underestimate its false positive rate.

We have taken what we believe to be a more accaradeconsistent approach to spam filter evaluatigna.
collected all the messages passing through our Gpampilot server for several days, along withtl# user votes
and the classifications generated during the sarieth Messages not receiving votes were assignaditial label
based on the classifier score received during digeration. This labeling provides a good first rapgmation,
because errors in the initial labeling would berected by users by voting. Then, we cleaned thaseatusing a
combination of automated tools and hand analysisoteect all mistakes we could find in the initlabeling. We
used a strict criterion: messages were labelegpa® ®nly if they were unsolicited commercial e-mahus opt-in-
spam, in which the user registered at a web sitestiates that the registration will be used bwihb site’s partners
to send commercial advertisements, is not counteds@am even though many people might still find it
objectionable or worthless. The resulting corpussesied of 173,000 consistently-labeled messagaa #00 e-
mail users within IBM, roughly 130,000 of which wedabeled as spam.

We randomly split the data into equal sized tragnamd test sets, to which each algorithm was aphte
that, as a consequence of our strict definitiospeEm, one would expect our measured false posiies to be a
good deal higher than what is typically reportedhia literature or in commercial anti-spam proditetature. Thus,
while our results are internally inconsistent, thene unfortunately difficult to compare with resulteported
elsewhere.

4.1 Individual Classifiers

Fig. 3 shows the results of evaluating each ofalassifiers on the test corpus. Each classifiedpces an output
score, and classifies a message as spam if ite ssmeeds a given threshold. The threshold cameltet as an
adjustable parameter that governs the tradeoff dmtwthe spam detection and false positive rates.eBoh

algorithm, we swept through a broad range of tholelsh measuring the detection and false posititesrat each
value. This generated the curves of Fig. 3.
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Several conclusions can be drawn. First, notettietdeal classifier would have a detection raté@¥% and a
false positive rate of 0%, and would hence be spred as a point at the top left corner of Figitais the quality
of a classifier can be judged according to howelits curve is to the top left. Chung-Kwei is easiten to be the
strongest classifier throughout the range, esggaallow false positive rates. At a false positragef of 0.1%, its
detection rated is 95.5%, which exceeds the value d&91.3% attained by its nearest competitor, JClassif
Chung-Kwei's superiority is even more evident atvéo false positive rates. Chung-Kwei attais87.3% at
f=0.01%, while JClassifier cannot even registerlsefpositive rate this low. At=0.1%, the other classifiers have
detection rates measuring approximatéh60% at best. Overall, the classifiers have fadfistinct detection vs.
false positive curves, with Linear Discriminant ipivery well at high false positive rates, and Riagm shining at



lower false positive rates. The Linear algorithmefapoorly because its training assumes an equightireg
between false positives and false negatives, isdikely that cost-sensitive training would impmoits performance
for small values of.

As has been noted, our strict definition of spankesait difficult to compare our results directlytivithose
reported elsewhere. As a result, the perceivee fadsitive rate of this algorithm is substantiddlgs than what the
absolute performance results suggest. However,sdiflex provides a reasonable calibration point, itass
essentially an enhanced naive-bayesian clasdifrig similar to many spam filters in use todalyisTsuggests that
Chung-Kwei is a truly superior spam classifierhaligh some actual head-to-head comparisons woutddugred
to establish this for certain. A close analysighef false positives produced by the classifiers=@t1% and below
revealed that most fell under the category of optpam, which would have been regarded as spamdsf m
classifiers. Thus the false positives in questi@amost universally harmless.

4.2 Combined Classifiers

One of the claimed advantages of our filter pipeisithat we can flexibly combine outputs from riplét classifiers
to obtain a combined classifier of superior effemtiess and robustness. To validate this claim, xperenented
with many different approaches to combining classsf By experimentation, we found that the mosiceasful
way to combine classifiers was to use their untholeled output scores as input to a linear supessitlar. In other
words, the super-classifier's score was a weighkted of the scores of the constituent classifietsichvwas then
thresholded. The optimal values of the weights thiedthreshold were established by minimizing a figrianction
in which each false negative received a penalty @nd each false positive received an adjustabhalpe We
generated the curves of Fig. 4 by sweeping thraliffarent values of the false positive penalty,ngsa standard
optimization routine to find the best weights ahdesholds at each value.

First, we tried all six possible pairings of theifelassifiers other than Chung-Kwei, and then amalgined all 5
classifiers. The results for two of the six paingl dor the five-way combination are shown in FigWe find that
combining just two classifiers can be very beneficOut of the six pairs, the best is JClassifierspLinear
Discriminant. Remarkably, even though both algonghhave the worst possible detection ratd=8f% atf=0.01%,
their combination achieves an excelldrB8.6% atf=0.01%, which is slightly better than Chung-Kwet.fA0.1%,
this combination achieva$=95.1%, which is essentially equivalent to Chungekvirhe super-classifier places the
greatest weight on Linear above f=0.05%, shiftingdgally to greater weight on JClassifier at lowalues off,
although Linear maintains a sizeable weight dowrth® lowest measurable valuesfofThe other pair shown,
SwiftFile plus Linear Discriminant, is also vastlyperior to its constituent classifiers at low éap@sitive rates, and
the relative weighting of the two constituent cifisss follows the same pattern. Even Chung-Kwei banefit from
combination with other classifiers. The 5-way suglassifier is noticeably superior to Chung-Kweitaming
d=95.8% atf=0.01% andd=98.1% atf=0.1%. Interestingly, the weight placed on ChungeKim the 5-way super-
classifier is in the same general range as thtiteobther classifiers.

5 Conclusions

We have presented SpamGuru, an anti-spam filtesyistem for enterprises that is based on three it@piodesign
principles. First, SpamGuru relieves the burderamti-spam administration by automating severaldasich as
maintaining white- and black-lists, updating fikeautomatically in response to user votes, etcorBkcthe

SpamGuru architecture supports easy, flexible gondition. This is important, because one size doefét all, and

because rapid changes in spammer techniques cassitate changes in configurations or tuning patarse
SpamGuru gives individual users control of theireleof filtering (thus accommodating a diverse ulsase while
minimizing complaints), and provides personalizéiéring that is usefully combined with global éls based on
collaborative voting among users. The filter arehhandles users concerns of false positives witlmuineed to
call support. Finally, by combining multiple dapate classifiers, we have shown that SpamGuruachieve

excellent discrimination between spam and legitematil, and can offer a tunable tradeoff betweemsgdetection
rates and false positives, with excellent spamatiete even at very low false positive rates.
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