IP Addresses in Email Clients

Joshua Goodman?!

Microsoft Research, Redmond, WA 98052

Abstract. [P addresses are an important tool for fighting spam, used for safe lists, blackhole lists,
anti-spoofing and related purposes. While it is trivial to find the sender’s IP address in most email
server software, it turns out to be surprisingly difficult to do so in email client software: we explain
why. This implies that either alternative approaches are needed (typically signature-based) or that new
standards for communicating between clients and servers are needed. We suggest several forms such
standards might take.

1 Introduction

IP addresses are a key part of many anti-spam efforts. As we discuss later, the sender’s IP address
is more-or-less the only part of an email message that cannot be faked. It is thus a key tool for most
anti-spam efforts involving identity. IP addresses are a key way to identify bad senders, including
blacklists like the MAPS RBL or violators of the rules of Habeas’ Sender Warranted Program. They
can also be used to identify known good senders, including Ironport’s Bonded Sender program.
Habeas’ Sender Warranted Program has also recently been extended to identify good senders by
IP address [2]. IP addresses are the key component of many anti-spoofing proposals, such as SPF
(Sender-Permitted-From), Sender-ID [4], and other proposals.

The Received lines in email headers contain the (alleged) list of IP addresses that email has
flowed through, as it is passed from one server to the next. As we will discuss below, many of these
lines can be faked (all those added by servers external to the recipient’s organization), while all
of those added by trusted servers (those internal to the recipient’s organization) can be believed.
The key line is the first one internal to the recipient’s organization, which gives the IP address of
the outside machine that delivered the message across the internet to the recipient’s organization.
This line can be trusted. We will refer to this line as the “first internal line.” Identifying this line
in clients is the goal of this paper.

Note that our objective here is to identify the first internal line, not the “true” sender. So, for
instance, in the case of mail that is automatically forwarded (e.g. through a .forward file), or sent
through a mailing list server, our goal is to identify the server that forwarded, or the mailing list
server, respectively, not the actual initial sender of the mail, which in general there is simply no way
to reliably do (because spammers can always make it look like a machine is a mailing list server or
forwarder even when it is not.)

In email server software, it is typically trivial to identify this first internal line. For instance,
the server at the gateway which actually writes this line is often also the place where spam software
runs, and thus trivially knows which line to use. In more complex environments, where internal
servers need this information, email administrators can configure server software appropriately. For
instance, the administrator could let a machine know that it is 3 hops from the gateway server,
and thus should look 3 lines down to find the relevant line.

For email client software, end users cannot be assumed to know the configuration of their email
servers. For instance, they do not know the precise number of steps from the gateway computer to
the mail-store computer, so a line counting technique will not work. One can imagine a number of

alternative algorithms. Later, we will describe reasons that each of these is problematic, especially
for large organizations, and especially in the face of spammer attacks. These approaches include
looking for the highest line containing an IP address with an MX record for the recipient’s organi-
zation; manually configuring client software with the number of hops; or using HELO information
to find the last machine internal to the recipient’s organization. We will show that all of these have
problems for large, complex email systems, where a single set of servers may host multiple domains,
complex load-balancing routers may confuse IP addresses, and where many computers, especially
those that are internal only, may not have DNS entries. In addition, algorithms that work today
may be vulnerable to spammer attacks. While these attacks do not occur in spam today, we can
assume that spammers will use them if a given vulnerable algorithm were widely deployed.

In the rest of this paper, we will first give a quick review of received headers. Next, we describe
in more detail each algorithm that does not work, and then give an example where the algorithm
fails. Then, we will describe an algorithm that works, in the sense that it knows when it does not
know: it either returns the correct IP address, or returns nothing. Unfortunately, there are many
cases in which returning nothing is the best it can do. We will describe potential standards changes
that could remedy this problem, as well as various alternative approaches, including abandoning
IP addresses and using signing-based approaches. We conclude that something must be done: we
must either create a new standard or abandon the idea of using IP addresses in client software.

2 Review of Received Headers

In this section, we quickly review Received headers. See RFCs 2821 and 2822 for details.

Email is normally passed on the internet from an originating client to a server to another server
to yet another server and so on, until it is eventually stored in a mailbox, where it can be accessed
from the recipient’s client. SMTP specifies that each server should prepend (place at the beginning)
a “Received” line. An example line might look like the following:

Received: from mlb.com ([172.20.120.74]) by
mail02.lists.mlb.com (Postfix) with ESMTP id 8D944F8244 for
<exampleusername@hotmail.com>; Fri, 12 Apr 2002 20:01:51 -0400 (EDT)

This example line says that the machine mail02.lists.mlb.com received the message from the machine
mlb.com. Note that mlb.com is not necessarily the machine that really communicated this mail
— this portion comes from the HELO SMTP command and a dishonest sender may insert any
information at all here. The sender’s IP address was 172.20.120.74, and that information cannot be
faked without extreme effort. By tracing through the list of received from lines, a human can find
the path that mail has actually followed.

The typical path for mail to follow is from an email client through one or more servers internal
to the sending organization, and then, across the internet, to the recipient’s first external server.
This external server typically relays the mail across the firewall to an internal server, where it
then passes through one or more other internal servers (e.g. virus checking) before ending up in a
mailbox. As the message is passed from one server to the next, received lines are prepended.

It is sometimes said that it is easy to fake the source of mail. Indeed, it is easy for a mail sender
to add any received headers he wants, and to delete or modify received headers lower in the list
(earlier in the path.) However, assuming a recipient can trust his own servers, all received headers
created by machines in the recipient’s organization can be trusted. Most of these are of no interest
from the point of view of fighting spam: the fact that my virus checking machine received mail

from my gateway machine is boring. The only header that both can be trusted and is interesting is
the one added by this first internal server. That header contains the IP address of the last external
server in the sender’s organization. If that last external server is known to be bad, e.g. is a known
open proxy or a known sender of spam, I probably want to reject the mail. If that last external
server is known to be good, e.g. is on Bonded Sender’s list of good senders, I probably want to
accept the mail. This is also the IP address used by anti-spoofing standards such as Sender-ID.
Thus, finding this first internal line is key.

Note that there is some confusion about the difficulty of faking an IP address over TCP/IP.
TCP packets contain a 32 bit sequence number communicated from the recipient to the sender,
which the sender must then use. In order to fake an IP address, the sender must somehow guess
this sequence number (one in 4 billion.) Many older systems used poor methods of randomizing
this sequence number, and spoofing was possible. Modern systems correctly randomize the sequence
number, making this attack extremely difficult. There are also other attacks on IP addresses, such as
injecting incorrect routing information into the internet, so that the sequence number information
from the recipient arrives at the forger’s machine instead of at the apparent sender’s machine. This
attack has been successfully used for otherwise unused IP addresses but we are not aware of its use
for IP addresses that are in use. A spammer sitting between the alleged sender and the recipient can
also eavesdrop/intercept the relevant sequence information. This means that an ISP or backbone
provider can easily forge data appearing to come from any of their customers. Fortunately, we are
not aware of spammers using this attack, which seems difficult to carry out.

3 Algorithms that do not work

In this section, we describe a number of algorithms for finding the first internal line in email clients.
We then explain why each of these algorithms, unfortunately, does not work all of the time, and
especially not in the face of spammer attacks.

3.1 Find the MX Record

The most obvious algorithm is to look through the list of IP addresses until one is found that
matches the recipient’s domain’s MX record. The MX record contains the list of inbound mail
servers for a given domain. That is, imagine I have an account at example.com and example.com’s
MX record lists three hosts, a.example.com, b.example.com and c.example.com, with IP adresses
1.2.3.4, 1.2.3.5 and 1.2.3.6 respectively. If I have a list of received from lines such as

Received: from y.example.com ([1.2.3.10]) by mailbox.example.com

Received: from x.example.com ([1.2.3.9]) by y.example.com

Received: from a.example.com ([1.2.3.4]) by x.example.com

Received: from spammer.sender.com ([90.91.92.93]) by a.example.com

Received: from faked.microsoft.com ([80.81.82.83) by spammer.sender.com

then I can simply scan through this list until I find, in this case,
Received: from a.example.com ([1.2.3.4]) by x.example.com

I assume that all lines before the gateway (including this one) are internal and can be trusted, and
that this line, containing a machine listed in the MX records, must be the one in which my gateway
machine passed the message to an internal machine. This means that the following line

Received: from spammer.sender.com ([90.91.92.93]) by a.example.com

must have come from the true last external machine of the sender, and that 90.91.92.93 is the
sender’s IP address.

Unfortunately, this algorithm fails in some important cases. Large recipients of email often
place a load balancing router in front of their gateway (first internal) machines. The load balancing
router has a different IP address than the actual gateway machines. For instance, imagine that
example.com switches to this strategy to balance their load across their machines a, b, and c. They
create a new pseudo machine mail.example.com, with IP address 1.2.3.20. This IP address goes to
a load balancing router, which routes the traffic round robin to a, b, or ¢. Load balancing routers
are not servers, so there is no line for mail.example.com in the received list. a.example.com does
not know or care about the routers that mail passes through, and so inserts

Received: from spammer.sender.com ([90.91.92.93]) by a.example.com

just as before. However, when we now try our “MX record” algorithm, it fails. The only MX record

now is for mail.example.com (1.2.3.20) which does not appear anywhere in the received from list.
This failure may not sound so bad — at least we know that we have failed. Unfortunately, an

evil spammer can now manipulate us. He inserts received from lines so that the final mail looks like

this:

Received: from y.example.com ([1.2.3.10]) by mailbox.example.com

Received: from x.example.com ([1.2.3.9]) by y.example.com

Received: from a.example.com ([1.2.3.4]) by x.example.com

Received: from spammer.sender.com ([90.91.92.93]) by a.example.com

Received: from mail.example.com ([1.2.3.20]) by spammer.sender.com

Received: from faked.microsoft.com ([80.81.82.83) by mail.example.com

(The last two lines are fake lines inserted by the spammer.) Now when we use our MX record
algorithm, we find the MX record line, and looking at the line after it, we think that this mail
originated at Microsoft. Not only has our MX record algorithm failed, it has made it easy for
spammers to trick us.

3.2 Manually configure clients

One option is to actually give clients all the information they need. For instance, we could tell
them that our servers at example.com are 4 deep, and that they should always look 4 lines down
to find the true sender. Or we could tell them the true list of gateway machines (a.example.com,
b.example.com, c.example.com) rather than having them rely on the MX record. Or we could tell
them that the range of IP addresses (1.2.3.%) corresponds to example.com’s domain. These are fine
solutions for email server software, run by technically savvy administrators, but relying on end users
to configure complex information like this in clients is unworkable for any mass market software.
Also, server information can easily change, and there needs to be a way to easily update the client
software.

This idea is not completely hopeless: standards changes could allow this information to be
communicated to clients automatically, and later, in the section on standards changes, we will
consider related ideas.

3.3 Use HELO information

For a human looking at the preceding lines, it is very obvious that spammer.sender.com is not inter-
nal to example.com. We could use an alternate algorithm of going through the received lines until

the first HELO that does not match the recipient’s organization, in this case spammer.sender.com.
Unfortunately, this fails for multiple reasons.

The first reason this fails is that spammers can easily send whatever information they want in the
HELO data. In our example, our spammer’s machine could have said “HELO internal.example.com.”
One can imagine performing forward and/or reverse IP lookups on the various names found in the
headers to verify that nothing is forged. Unfortunately, these may detect forgeries or problems
where none exist. For instance, we have seen at Microsoft that machines like virus scanners that
are not accessible externally are not registered with all DNS servers.

In addition, and perhaps more seriously, the names of machines used in an organization do not
necessarily match the recipient’s domain name. In our example, all internal domain names were in
the example.com domain. Unfortunately, in many large installations, the same machines are used
to host multiple domains. For instance, microsoft.com machines handle all email for xbox.com.

4 An Algorithm That Knows When it Works

In this section, we describe a conservative algorithm for finding the IP address that when it works,
knows that it worked, and when it didn’t work, knows that it didn’t. Unfortunately, in many
interesting cases (many of the examples above) the algorithm simply concludes that it cannot tell
which line is the correct one.

The basic idea is that in several cases, we can be sure that we are still internal to the recipient’s
domain. We keep searching down (backwards in time) until we find a machine in the MX record,
immediately followed by an address that appears to be external to the recipient’s domain.

There are several cases where we can be sure we are in the recipient’s domain: if the IP address
belongs to a machine listed in the MX record for the domain, we can be sure. If the IP address
belongs to a range used for dynamic IP address assignment, and we are sure that we are still in
the domain, then we can be sure. If the domain name in the HELO is internal to the domain, and
a DNS lookup verifies that the HELO matches the IP address, we can be sure.

We can keep looking through the list until we reach a machine listed in the MX record. If the
machine listed in the MX record received from an external sender, we can be very confident that
we have found the sender.

bool fFoundMXRecord = FALSE;
for each received from line of the form Received from a.b.c [i.j.k.1] {
if i.j.k.1 in MX records of receiver domain {
fFoundMXRecord = TRUE;

continue;
}
if i.j.k.1 is of form
10.x.y.z or
172.16.y.z to 172.31.y.z or
192.168.0.z to 192.168.255.z
{
continue; # Must be intermal
}

if DNS lookup of a.b.c yields i.j.k.l and b.c is receiver domain {
continue; # Must be internal

}

if fFoundMXRecord {
Output sender’s alleged domain a.b.c and sender’s
actual TP address i.j.k.1

} else {
Error: unable to identify sender’s IP address

}

If we reach here, then Error: unable to identify sender’s IP address

Note that this algorithm is not 100% foolproof. Consider a bizarre configuration for exam-
ple.com’s server. Imagine that after being received by mx1.example.com, the mail follows the fol-
lowing path:

mx1.example.com
confusing.com
mx2.example.com
mailbox.example.com

A machine called mx1.example.com is listed in the MX records for example.com. mx1.example.com
passes the mail to confusing.com — a machine in a different domain. This machine in a different
domain passes the mail back to mx2.example.com — a machine that is also listed in the MX records
for example.com which only then passes the mail to mailbox.example.com. It’s hard to picture such
a configuration existing.! Note that the following configuration does not confuse this algorithm:

mx1.example.com
mx2.example.com
mailbox.example.com

The following scenario (which is an odd unlikely one) will confuse the algorithm if internal.example.com
does not have a DNS record, or has a misconfigured HELO.

mx1.example.com
internal.example.com
mx2.example.com
mailbox.example.com

Thus we believe that this algorithm is safe to use in practice.

5 New Standards

Unfortunately, in too many interesting cases, this algorithm fails to find an answer. In particular,
it fails to find an answer when the gateway machine sits behind a load balancing router, as it often
does at large organizations. It also fails when the same organization hosts multiple domains. While
this algorithm fails safely, “knowing that it doesn t know”, that is insufficient.

We thus believe that some sort of new standard is needed for communicating between servers
and clients. In this section, we review several possibilities, rejecting some, but at this time not
endorsing any, pending further investigation.

1 One could imagine this particular sequence in a forwarding scenario, such as a mailing list at example.com that
sends to a user at confusing who forwards to a user at example. But as mentioned in the introduction, in the case
of mailing lists or forwards, we consider the sender to be the forwarder or mailing list.

One naive approach is having servers simply add a header, but spammers could add the header
as well. While new servers would strip out this header, old servers would not, and new clients
matched with old servers would look for the headers and be deceived by spammers.

Another approach is to have any IP address related work done in the servers, which then
inserts the results of its work for the client. For instance, the server could check if the sender is on
the Bonded Sender list, and add a header that says “BondedSender: TRUE” or “BondedSender:
FALSE” This does not solve the problem, but only shifts it, since we still must solve the problem
of how to communicate this information reliably from server to client; there is nothing to prevent
spammers from inserting these headers, again confusing new clients used with old servers.

A variation on this approach is to let servers not just use the additional information, but also take
any needed actions. For instance, using a blacklist, the server can delete the email. Unfortunately,
this approach also has problems: if client and server need to cooperate, they cannot. For instance,
many per-user safelists exist on clients only, so a server using a blacklist like the RBL would not be
able to make exceptions for an individual user. This also forces people to upgrade servers for any
new functionality, eliminating the ability of individuals to install new functionality in their clients.

Another approach, suggested by Bob Atkinson, involves adding information to the recipient’s
DNS entries. Various information could be added here. In our favorite variation, just as approaches
like Sender Permitted From, Sender-ID and RMX have proposed listing the valid outbound IP
addresses for senders, we could add yet another DNS entry that listed the gateway servers for a
domain that were visible internally (e.g. after load balancing routers, etc.) Unlike other uses of DNS
entries, these are meant to be used internally. (Atkinson suggests a slightly different approach than
this, but we prefer this variation.)

Yet another approach is for the last recipient server to modify the top received from line, adding,
for instance, a specially formatted comment to that line that contains the appropriate IP address.
(RFC 2821 allows comments in received from lines.) Only an internal server is capable of adding a
comment in the top (most recent) received from line, so, if present, such a comment can always be
trusted.

These two approaches — more DNS entries and modified received lines — should be carefully
evaluated in real systems. Do most email clients have access to DNS servers, or do they sit behind
corporate firewalls that blocks such access? Will adding comments cause any unforseen problems? If
the DNS approach works, it seems preferable to us, since it does not require any server modifications.

6 Alternative approaches

This paper has focused on finding the relevant IP address as a general problem. However, it is not
always clear that this is the right answer at all. For negative use of IP addresses, such as blacklists,
there are other options. In this section, we examine a “shot gun” approach for negative information,
in which we examine all or nearly all IP addresses. For positive information, we briefly consider
signature based approaches as an alternative to IP-based approaches.

This paper has focused on finding the relevant IP address as a general problem. For “positive”
uses of IP addresses, such as Bonded Sender or Sender-1D, this is important. For negative uses of IP
addresses, such as blacklists, a different technique is possible: one can scan the headers for any bad
IP addresses. If any address in the headers is bad, then the sender is assumed bad. One can first
remove any addresses that are obviously internal, e.g. those that are obviously in the same domain
as the recipient. This approach is relatively robust and has only one problem: if the recipient’s
domain is listed as bad, the recipient’s mail is always penalized. For instance, if the recipient’s mail

servers are listed on a blacklist, the recipient might have all of his inbound mail deleted. While
morally, one might or might not think it fine to delete all mail sent to a domain that spam is sent
from, this is not fiscally wise: such an action is sure to result in expensive support calls or worse.

One alternative to IP address based schemes for positive information is signature-based ap-
proaches. Instead of basing identity on the IP address, we force senders to crytpographically sign
their mail in some way. This can be used for anti-spoofing proposals as suggested for, e.g. Ya-
hoo’s DomainKeys proposal, as well as for safe sender lists, e.g. ePrivacy group’s Trusted Sender
program. These signing-based approaches have the advantage that they work equally well in both
clients and servers. It is important to realize, however, that while signature-based approaches avoid
one problem (the client IP problem) they introduce many other problems. The most important
is that any senders wishing to adopt them must modify their software. IP-based approaches do
not require any modifications by senders, speeding broad adoption. Signature-based proposals have
other problems as well. For instance, some servers may make surprisingly large changes to the body
of email messages, breaking some overly simplistic signing approaches. The goal of this section is
not to recommend either IP address approaches or signing approaches, but simply to make it clear
that in both cases there are difficult issues that must be solved.

7 Conclusion

Most people find it very surprising that it is so difficult to find the right received line in an email
client. IP address features have long been used in servers (particularly blacklists) and any hu-
man being examining headers can determine the right line. Thus, both industrial practice and
personal experience give the impression that this is an easy task. Also, because there have been
no widespread, automated, client-side uses of IP information, spammers have not yet had much
incentive to defeat some of the faulty algorithms described in this paper, and thus the attacks are
not well known: they must be predicted, rather than being observed.

IP address information is becoming increasingly important. IP addresses are already widely used
in blacklists, but these are primarily server or router-based. Aside from blacklists, IP addresses are
not yet widely used. However, it looks like at least some form of anti-spoofing proposal will soon
gain acceptance and safe sender lists (like Bonded Sender) are also growing in popularity. As the
importance of IP addresses increases, especially IP addresses used for positive information, the
importance of making them available in clients also increases.

We have proposed two methods for solving this problem. Our favored proposal (due to Bob
Atkinson) is to expose the relevant IP addresses in DNS entries, in a manner similar to Sender-ID.
Alternatives, such as modifying the top received header, also merit investigation. And of course,
this being a new problem, it is quite possible there are other, even better solutions. In any event,
some new standard must be adopted if IP addresses are to be useful in clients.

References

1. Habeas. Sender warranted program. See http://www.www.habeas.com.

2. Habeas. Habeas releases patches for SpamAssassin, April 6 2004. See http://www.www.habeas.com/
configurationPages/spamassassin.htm.

3. Ironport. Bonded sender, 2004. See http://www.bondedsender . com.

4. Jim Lyon and Meng Weng Wong. MTA authentication records in DNS, 2004. Available from http:
//www.microsoft.com/mscorp/twc/privacy/spam/5Fsenderid.mspx.

5. MAPS. Mail abuse prevention system realtime blackhole list, 2003. See http://mail-abuse.org/rbl/.

6. SPF. Sender Permitted From. See http://spf.pobox.com.

