On Attacking Statistical Spam Filters

Greg Wittel & S. Felix Wu
U.C. Davis

CEAS 2004
Outline

- Introduction
- Attack Classes
- Testing A New Attack
- Conclusions & Future
Attack Classes

- Attempted attack methods:
 - Tokenization
 - Works against feature selection by splitting or modifying key message features
 - e.g. Splitting up words with spaces, HTML tricks
 - Obfuscation
 - Use encoding or misdirection to hide contents from filter
 - e.g. HTML/URL encoding, letter substitution
Attack Classes cont.

- **Weak Statistical**
 - Skew message statistics by adding in random data
 - e.g. Add in random words, fake HTML tags, random text excerpts

- **Strong Statistical**
 - Differentiated from ‘weak’ attacks by using more intelligence in the attack
 - Guessing v. educated guessing
 - e.g. Graham-Cumming Attack
Attack Classes cont.

- Misc:
 - Sparse Data attack
 - Hash breaking attacks
Testing A New Attack

- Tested two types of attacks:
 - Dictionary word attack (old)
 - Common word attack (new)
- Both attacks add n random words to a base message.
- Tested against two filters:
 - CRM114 - Sparse binary poly. + Naïve Bayesian
 - SpamBayes (SB) - Naïve bayesian
Procedure

- Training data
 - 3000 hams from SpamAssassin corpus
 - 3000 spams from SpamArchive-mod corpus
 - CRM114 trained on errors
 - SB using bulk training
Procedure cont.

- Test data
 - Started with a base ‘picospam’ not in training data:

 From: Kelsey Stone <bouhooh@entitlement.com>
 To: submit@spamarchive.org
 Subject: Erase hidden Spies or Trojan Horses from your computer

 Erase E-Spyware from your computer

 http://boozofoof.spywiper.biz
Procedure cont.

- Test data cont.
 - Base picospam is detectable by filters
 - Generated 1000 variations with n words added.
 - Words selected with and without replacement
 - $n = 10, 25, 50, 100, 200, 300, 400$
 - Recorded classifications, effect on score
Results

- Using 10,000 variants didn’t effect results
- Selection with/without replacement had no effect
- Mixed results
CRM114 Results

- Both attacks failed; 0 false negatives
- Spam score was effected...
CRM114 Results cont.

![Graph showing spam probability vs words added. The graph has a y-axis labeled 'Spam probability' ranging from 0.75 to 1.0, and an x-axis labeled 'Words added' ranging from 0 to 400. The graph includes lines and markers indicating 'Dictionary' and 'Common' with different symbols. The base score is indicated by a dotted line at 0.95.](image-url)
SpamBayes Results

- Baseline Dictionary attack: mild success
- Common word attack...
SpamBayes Results cont.

![Graph showing spam probability vs. words added]
SpamBayes Results cont.

- Common word attack reduces attack size by up to 4x
- What Happened? Why such poor performance on either attack?
- Hypothesis: Basis picospam was not in training data.
- Added the basis spam to SB’s training data...
SpamBayes Results Part 2

- Retrained filter offered greater resistance to ‘weak’ dictionary attack.
- Small performance gain against common word attack.
- Gains not big enough to resist attack
Dictionary Word Attack

SpamBayes Results Part 2 cont.
SpamBayes Results Part 2 cont.

Common Word Attack

![Graph showing spam probability vs. words added before and after with spam and ham thresholds indicated.](image)
Conclusion & Future…

- Mixed success of common word attack shows need for further study
- Other filters
 - Bogofilter shows similar vulnerability
- Effect of re-training on attack msgs v.
 - False negative, false positive rate
- Testing other basis picospams
Future cont.

- What makes a filter hard to distract?
- Relevance of independence assumption
- More advanced attacks
 - Natural language generation
- Traditional software flaws
 - Exploitable buffer overflows
 - Remote code execution
Colophon

- **Contact information:**
 - Greg Wittel (wittel at cs.ucdavis.edu)
 - S. Felix Wu (wu at cs.ucdavis.edu)

- **Questions?**